4.6 Article

Invasive macroalgae in native seagrass beds: vectors of spread and impacts

Journal

ANNALS OF BOTANY
Volume -, Issue -, Pages -

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/aob/mcad143

Keywords

Biochemistry; ecosystem engineer; invasion; limpet; Sargassum muticum; seagrass; vector; Zostera marina; allelopathy

Categories

Ask authors/readers for more resources

This study reveals that limpets may act as a previously unreported transport mechanism, introducing the invasive species S. muticum into sensitive habitats and reducing the defensive capabilities of the seagrass Z. marina. However, Z. marina shows some resilience to the effects of S. muticum on photosynthesis.
Background and Aims Worldwide, invasive species are spreading through marine systems at an unprecedented rate with both positive and negative consequences for ecosystems and the biological functioning of organisms. Human activities from shipping to habitat damage and modification are known vectors of spread, although biological interactions including epibiosis are increasingly recognized as potentially important to introduction into susceptible habitats.Methods We assessed a novel mechanism of spread - limpets as transporters of an invasive alga, Sargassum muticum, into beds of the seagrass Zostera marina - and the physiological impact of its invasion. The association of S. muticum with three limpet species and other habitats was assessed using intertidal surveys on rocky shores and snorkelling at two seagrass sites in the UK. A 4-year field study tested the effect of S. muticum on Z. marina shoot density, dry weight and phenolic compounds (caffeic and tannic acid) content, and a laboratory experiment tested the impact of S. muticum on nutrient partitioning (C/H/N/P/Si), photosynthetic efficiency (F-v/F-m) and growth of Z. marina.Results On rocky shores 15 % of S. muticum occurrences were attached to the shells of live limpets. In seagrass beds 5 % of S. muticum occurrences were attached to the shells of dead limpets. The remainder were attached to rock, to cobblestones, to the seagrass matrix or embedded within the sand. Z. marina density and phenolics content was lower when S. muticum co-occurred with it. Over 3 years, photosynthetic responses of Z. marina to S. muticum were idiosyncratic, and S. muticum had no effect on nutrient partitioning in Z. marina.Conclusions Our results show limpets support S. muticum as an epibiont and may act as a previously unreported transport mechanism introducing invaders into sensitive habitats. S. muticum reduced production of phenolics in Z. marina, which may weaken its defensive capabilities and facilitate proliferation of S. muticum. The effect of S. muticum on Z. marina photosynthesis requires further work but having no effect on the capacity of Z. marina to sequester nutrients suggests a degree of resilience to this invader.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available