4.8 Article

Boosting Zn Anode Utilization by Trace Iodine Ions in Organic-Water Hybrid Electrolytes through Formation of Anion-rich Adsorbing Layers

Related references

Note: Only part of the references are listed.
Article Multidisciplinary Sciences

Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities

Xinhua Zheng et al.

Summary: The design of a two-dimensional antimony/antimony-zinc alloy heterostructured interface enables dendrite-free Zn deposition with high areal capacity and energy density.

NATURE COMMUNICATIONS (2023)

Article Chemistry, Multidisciplinary

High-Capacity Zinc Anode with 96 % Utilization Rate Enabled by Solvation Structure Design

Mingming Wang et al.

Summary: By introducing sulfolane (SL) into the electrolyte, a novel solvation structure is designed, achieving high ZUR and high performance AZB.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2023)

Article Chemistry, Multidisciplinary

Hydrogen Bond-Functionalized Massive Solvation Modules Stabilizing Bilateral Interfaces

Wenyong Chen et al.

Summary: In this study, a maltose-based hybrid electrolyte with hydrogen bond-functionalized massive solvation modules is constructed to address the poor cyclic stability of zinc-ion batteries. The solvation modules promote uniform deposition of zinc at the anode interface and hinder parasitic reactions through hydrogen bond confinement. Meanwhile, they prevent structural collapse at the cathode interface and maintain low interfacial activation energy during cycling. The resultant full batteries retain 84.2% of their initial specific capacity after 400 continuous cycles at a low current density of 50 mA g(-1).

ADVANCED FUNCTIONAL MATERIALS (2022)

Article Multidisciplinary Sciences

Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries

Giorgia Zampardi et al.

Summary: Aqueous zinc-ion batteries have potential as stationary storage systems for power-grid applications, but certain challenges need to be addressed and experimental practices need to be aligned with industrial working conditions to promote their commercialization.

NATURE COMMUNICATIONS (2022)

Article Chemistry, Physical

A Universal Additive Strategy to Reshape Electrolyte Solvation Structure toward Reversible Zn Storage

Tian Chen Li et al.

Summary: Adding carbonyl-containing organic solvents can enhance the reversibility of zinc-ion batteries and improve their cycling stability and capacity retention.

ADVANCED ENERGY MATERIALS (2022)

Article Green & Sustainable Science & Technology

A non-flammable hydrous organic electrolyte for sustainable zinc batteries

Daliang Han et al.

Summary: Aqueous zinc batteries are safer than lithium-ion batteries, but their anodes are susceptible to dendrite failure and side reactions. The authors demonstrate a low-cost electrolyte that involves hydrate salt and organic solvent, proving to be non-flammable. The zinc battery cell delivers excellent performance even at low temperatures of -30 degrees Celsius.

NATURE SUSTAINABILITY (2022)

Article Chemistry, Multidisciplinary

Aqueous Electrolytes with Hydrophobic Organic Cosolvents for Stabilizing Zinc Metal Anodes

Licheng Miao et al.

Summary: The introduction of a hydrophobic carbonate cosolvent in rechargeable aqueous zinc batteries can address the irreversible issues of Zn metal anodes by breaking the water's H-bond network, replacing solvating H2O, and creating a dendrite-free Zn2+-plating behavior. This efficient strategy with a hydrophobic cosolvent offers a promising direction for designing aqueous battery chemistries.

ACS NANO (2022)

Article Chemistry, Physical

Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries

Guoqiang Ma et al.

Summary: In this study, the stability of metallic zinc anode in aqueous batteries was significantly improved by using a non-concentrated aqueous zinc trifluoromethanesulfonate electrolyte with 1,2-dimethoxyethane additive. The introduction of DME disrupted the original hydrogen-bond network of water and created a unique Zn2+-solvation structure, effectively suppressing water-induced side reactions. The in-situ formation of an organic-inorganic hybrid interphase on the zinc anode further prevented water penetration and dendrite growth. This novel electrolyte enabled the zinc anodes to achieve unprecedented cycling stability and high reversibility.

ENERGY STORAGE MATERIALS (2022)

Article Chemistry, Multidisciplinary

In Situ Construction of Protective Films on Zn Metal Anodes via Natural Protein Additives Enabling High-Performance Zinc Ion Batteries

Jing Xu et al.

Summary: The introduction of silk fibroin (SF) as an electrolyte additive for aqueous zinc-ion batteries can form a stable and self-healable protective film, which promotes homogeneous zinc deposition and suppresses parasitic reactions, leading to improved cycle life of the batteries.

ACS NANO (2022)

Article Chemistry, Multidisciplinary

Spontaneous Construction of Nucleophilic Carbonyl-Containing Interphase toward Ultrastable Zinc-Metal Anodes

Pinji Wang et al.

Summary: Multifunctional interfacial engineering on the Zn anode, through the spontaneous construction of a carbonyl-containing layer (Zn@ZCO), effectively suppresses dendrite growth, hydrogen evolution, and sluggish kinetics associated with Zn deposition. The Zn@ZCO anode exhibits a long cycling lifespan, dendrite-free surface, and excellent rate performance in aqueous zinc-ion batteries.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

An Ultrahigh Rate and Stable Zinc Anode by Facet-Matching-Induced Dendrite Regulation

Zhehan Yi et al.

Summary: This study presents an alternative dendrite regulation strategy of forming tiny, homogeneously distributed, and identical zinc dendrites by facet matching, which effectively avoids undesirable dendrite enlargement. The feasibility of this strategy in zinc batteries is confirmed and the potential applications in zinc, magnesium, and aluminum anodes are demonstrated.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Working Zinc-Air Batteries at 80 °C

Chang-Xin Zhao et al.

Summary: This study systematically investigates the working feasibility of high-temperature zinc-air batteries and identifies the effects of the parasitic hydrogen evolution reaction on anode efficiency, as well as the cycling feasibility of zinc-air batteries at 80 degrees Celsius.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2022)

Article Chemistry, Multidisciplinary

Achieving Highly Reversible Zinc Anodes via N, N-Dimethylacetamide Enabled Zn-Ion Solvation Regulation

Fangfang Wu et al.

Summary: Optimization of electrolyte composition is a practical way to improve the performance of aqueous zinc-ion batteries (ZIBs). In this study, a mixture electrolyte containing 10 vol% of N,N-Dimethylacetamide (DMA) and ZnSO4 was used to enhance the reversibility of Zn plating/stripping. It was found that DMA has the ability to reconstruct the solvation structure of Zn2+ and inhibit dendrite growth on Zn anode.

SMALL (2022)

Editorial Material Chemistry, Physical

Challenges in temperature measurements in gas-phase photothermal catalysis

Luca Mascaretti et al.

Summary: This passage introduces some researchers from Italy. Their research areas include solar energy conversion, applications of nanomaterials, and environmental and energy-related applications.

JOULE (2022)

Article Chemistry, Physical

Three-functional ether-based co-solvents for suppressing water-induced parasitic reactions in aqueous Zn-ion batteries

Licheng Miao et al.

Summary: This study designs a three-functional ether-based co-solvent to improve the stability of aqueous Zn batteries by decreasing the reactivity of water. The results show that ether co-solvents can reduce the number of coordinated water molecules, interrupt the hydrogen-bonding networks of water, and isolate water adsorption on Zn anodes, thereby reducing water decomposition and stabilizing Zn anodes. Moreover, incorporating multiple ether groups in the ether molecular skeleton intensifies this synergistic effect.

ENERGY STORAGE MATERIALS (2022)

Review Chemistry, Multidisciplinary

Rechargeable Batteries for Grid Scale Energy Storage

Zhengxin Zhu et al.

Summary: This article discusses battery research in the field of energy storage, focusing on the importance of practical application requirements and battery performance matching. By systematically analyzing key parameters, standards and measures for GSES are proposed, and some promising battery technologies for practical applications are explored.

CHEMICAL REVIEWS (2022)

Article Chemistry, Multidisciplinary

Halogenated Zn2+ Solvation Structure for Reversible Zn Metal Batteries

Qiu Zhang et al.

Summary: By introducing halogen ions, the challenges of dendritic growth and hydrogen evolution reaction in zinc metal batteries can be overcome. Designing an electrolyte composed of zinc acetate and ammonium halide can form a halogenated Zn2+ solvation structure, achieving high coulombic efficiency and suppressing dendritic growth.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2022)

Article Chemistry, Physical

Reversible and homogenous zinc deposition enabled by in-situ grown Cu particles on expanded graphite for dendrite-free and flexible zinc metal anodes

Guoyuan Chen et al.

Summary: This study reports a new type of dendrite-free and flexible zinc metal anode based on expanded graphite and copper particles. The anode exhibits low zinc deposition overpotential and excellent cycling performance, while the flexible zinc-ion capacitor equipped with this anode maintains stable power output at various bending statuses.

ENERGY STORAGE MATERIALS (2022)

Article Chemistry, Multidisciplinary

Intercalation of organics into layered structures enables superior interface compatibility and fast charge diffusion for dendrite-free Zn anodes

Huili Peng et al.

Summary: By intercalating n-butylamine into monodisperse hexagonal nanoplates of alpha-ZrP, the compatibility with hydrophobic polymers is improved, resulting in a dense and robust artificial layer on the zinc anode. This reduces direct exposure to electrolytes and suppresses side reactions, leading to improved electrochemical performance.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Article Materials Science, Multidisciplinary

Enabling high-energy-density aqueous batteries with bond-anchored electrolytes

Yu Wang et al.

Summary: In this study, a hydrogen bond-anchored electrolyte is developed to limit water activity and expand the voltage window. The designed electrolyte suppresses the hydrogen evolution reaction and achieves stable performance in high-voltage aqueous batteries.

MATTER (2022)

Article Chemistry, Physical

Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries

Runzhi Qin et al.

Summary: The addition of ethylene glycol as an additive in aqueous electrolyte effectively inhibits the short-circuit issue induced by zinc dendrite growth in zinc-ion batteries, leading to longer cycling lifespan. By modifying the solvation sheath of zinc ions, the diffusion rate of zinc ions is reduced, promoting a uniform deposition morphology.

NANO ENERGY (2021)

Article Chemistry, Multidisciplinary

Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low-Cost Antisolvents

Junnan Hao et al.

Summary: A similar antisolvent strategy has been used to enhance Zn reversibility and suppress dendrite growth in Zn plating/stripping, with promising results shown in 50% methanol electrolyte. This low-cost strategy can be easily applied to other solvents, demonstrating practical universality and potential for enhancing performance in electrochemistry and energy storage research.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Review Chemistry, Physical

Strategies for the Stabilization of Zn Metal Anodes for Zn-Ion Batteries

Zhehan Yi et al.

Summary: Zinc-ion batteries are considered promising candidates for next-generation energy storage systems due to their high safety, resource availability, and environmental friendliness. However, the instability of the Zn metal anode has hindered their reliable deployment, and efforts have been made to overcome this through electrode structure design, interface modification, and electrolyte/separator optimization. Understanding and categorizing these strategies based on their intrinsic mechanisms are important for the development of novel Zn metal anodes for ZIBs.

ADVANCED ENERGY MATERIALS (2021)

Article Chemistry, Multidisciplinary

A Replacement Reaction Enabled Interdigitated Metal/Solid Electrolyte Architecture for Battery Cycling at 20 mA cm-2 and 20 mAh cm-2

Zhao Cai et al.

Summary: Metal anodes are a promising choice for high energy density rechargeable batteries, but face challenges like volume variation and side reactions. A novel interdigitated metal/solid electrolyte composite electrode was fabricated using a replacement reaction, providing a stable host structure and preventing side reactions. This design demonstrated stable electrochemical performance and low overpotential, outperforming other reported metal electrodes.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Multidisciplinary Sciences

Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries

Zedong Zhao et al.

Summary: This study developed a fluorinated covalent organic framework film as a protective layer for aqueous zinc anode battery, aiming to reduce zinc dendrite growth and electrolyte corrosion, achieve horizontally arranged zinc deposition, and improve stability and cycling performance.

NATURE COMMUNICATIONS (2021)

Article Nanoscience & Nanotechnology

Fluorinated interphase enables reversible aqueous zinc battery chemistries

Longsheng Cao et al.

Summary: The study introduces an aqueous zinc battery with a solid-electrolyte interphase that enables excellent performance in various tests, demonstrating its potential for practical applications in energy storage.

NATURE NANOTECHNOLOGY (2021)

Article Chemistry, Multidisciplinary

Stabilizing Zinc Anodes by Regulating the Electrical Double Layer with Saccharin Anions

Cong Huang et al.

Summary: The research shows that saccharin (Sac) as an electrolyte additive can regulate the electrical double layer (EDL) structure on the zinc anode, forming a unique solid electrolyte interphase (SEI) that effectively modulates zinc deposition behavior and prevents side reactions, thus improving battery performance.

ADVANCED MATERIALS (2021)

Article Chemistry, Multidisciplinary

Designing Anion-Type Water-Free Zn2+ Solvation Structure for Robust Zn Metal Anode

Qiu Zhang et al.

Summary: The study introduces a novel electrolyte design strategy to transform Zn(H2O)(6)(2+) into ZnCl42-, which suppresses the dendritic growth and interface hydrogen evolution reaction in Zn batteries. This approach enables uniform Zn deposition and high Coulombic efficiency, leading to long lifespan metal anode batteries.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Chemistry, Multidisciplinary

Simultaneous Regulation on Solvation Shell and Electrode Interface for Dendrite-Free Zn Ion Batteries Achieved by a Low-Cost Glucose Additive

Peng Sun et al.

Summary: The addition of glucose in ZnSO4 electrolyte can improve the performance of Zn ion batteries by suppressing Zn dendrite growth and side reactions, enhancing stability.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2021)

Article Multidisciplinary Sciences

A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries

Zirui Lin et al.

Summary: In this study, tetraamino-p-benzoquinone was used as a cathode material to achieve facile proton conduction through the Grotthuss-type mechanism, showing excellent electrochemical performance. This work proposes an effective approach towards high performance organic electrode materials, with the flexible structural design of organic materials making them promising candidates for cathode in rechargeable batteries.

NATURE COMMUNICATIONS (2021)

Article Electrochemistry

A perspective of ZnCl2 electrolytes: The physical and electrochemical properties

Xiulei Ji

Summary: Molten ZnCl2 hydrates are ionic liquids with intriguing physical and electrochemical properties, suitable for use as electrolytes in Zn metal batteries. Understanding the properties of molten ZnCl2 hydrates is crucial for designing high-performance electrolytes.

ESCIENCE (2021)

Article Chemistry, Multidisciplinary

In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes

Yuzhu Chu et al.

Summary: The in situ construction of a composite SEI mainly composed of Zn-3(PO4)(2) and ZnF2 (ZCS) effectively suppresses Zn dendrite growth and accelerates Zn2+ transference and deposition kinetics in aqueous Zn-ion batteries. By taking advantage of the instability of KPF6 in an aqueous environment, an in situ ZCS is successfully built on the Zn anode through a PF6- anion-induced chemical strategy, showing enhanced reversibility and excellent electrochemical performance. This work not only paves a new way for designing a desirable SEI on the Zn anode, but also may guide the interface engineering of other systems to overcome intrinsic defects in constructing favorable interphases.

ENERGY & ENVIRONMENTAL SCIENCE (2021)

Article Chemistry, Multidisciplinary

Constructing a Super-Saturated Electrolyte Front Surface for Stable Rechargeable Aqueous Zinc Batteries

Huijun Yang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Article Chemistry, Multidisciplinary

Zinc-Organic Battery with a Wide Operation-Temperature Window from-70 to 150 °C

Nan Wang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2020)

Review Energy & Fuels

Current status and future directions of multivalent metal-ion batteries

Yanliang Liang et al.

NATURE ENERGY (2020)

Article Multidisciplinary Sciences

Modulating electrolyte structure for ultralow temperature aqueous zinc batteries

Qiu Zhang et al.

NATURE COMMUNICATIONS (2020)

Article Energy & Fuels

Realizing high zinc reversibility in rechargeable batteries

Lin Ma et al.

NATURE ENERGY (2020)

Article Chemistry, Multidisciplinary

Solvation Structure Design for Aqueous Zn Metal Batteries

Longsheng Cao et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2020)

Article Chemistry, Multidisciplinary

Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes

Xuesong Xie et al.

ENERGY & ENVIRONMENTAL SCIENCE (2020)

Article Chemistry, Multidisciplinary

A Self-Healing Integrated All-in-One Zinc-Ion Battery

Shuo Huang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Article Chemistry, Multidisciplinary

Regulating the Inner Helmholtz Plane for Stable Solid Electrolyte Interphase on Lithium Metal Anodes

Chong Yan et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Article Chemistry, Multidisciplinary

A Highly Reversible Zn Anode with Intrinsically Safe Organic Electrolyte for Long-Cycle-Life Batteries

Ahmad Naveed et al.

ADVANCED MATERIALS (2019)

Article Multidisciplinary Sciences

Reversible epitaxial electrodeposition of metals in battery anodes

Jingxu Zheng et al.

SCIENCE (2019)

Article Chemistry, Physical

Reducing Mg Anode Overpotential via Ion Conductive Surface Layer Formation by Iodine Additive

Xiaogang Li et al.

ADVANCED ENERGY MATERIALS (2018)

News Item Chemistry, Physical

Rejuvenating zinc batteries

Enyuan Hu et al.

NATURE MATERIALS (2018)

Article Chemistry, Physical

Highly reversible zinc metal anode for aqueous batteries

Fei Wang et al.

NATURE MATERIALS (2018)

Article Chemistry, Physical

Stable Artificial Solid Electrolyte Interphases for Lithium Batteries

Lin Ma et al.

CHEMISTRY OF MATERIALS (2017)