4.8 Article

Dual-Modal Biosensor for Staphylococcus aureus Detection Based on a Porphyrin-Based Porous Organic Polymer FePor-TPA with Excellent Peroxidase-like, Catalase-like, and Photoelectrochemical Properties

Journal

ANALYTICAL CHEMISTRY
Volume 95, Issue 37, Pages 13855-13863

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.3c01950

Keywords

-

Ask authors/readers for more resources

A dual-mode biosensor based on FePor-TPA was successfully constructed for the detection of Staphylococcus aureus. FePor-TPA exhibited excellent catalytic activity and conductivity, and its powder form could be used to load signal probes for catalytic amplification.
Bacterial infections seriously harm human health and cause many severe diseases, which triggered urgent demands to exploit specific and sensitive biosensor strategies for Staphylococcus aureus detection. Here, a colorimetric and photoelectrochemical dual-mode biosensor for S. aureus assay based on FePor-TPA was constructed. 2D FePor-TPA thin film and its bulk powder (FePor-TPA) were synthesized by in situ growth on ITO and a solvothermal condition, respectively, both of which exhibited excellent peroxidase-like and catalase-like activity, originating from their metalloporphyrin linkers. Benefiting from the in situ growth on ITO electrodes, the 2D FePor-TPA thin film also possessed a more ordered stacking mode and in turn exhibited good electrical conductivity, stable initial photocurrent, and high sensitivity to O-2. As for bulk FePor-TPA, its porous structure and high specific surface area make it a possible scaffold to load an amount of AuNPs, the rabbit anti-Staphylococcus aureus Rosenbach tropina antibody (Ab(2)), and GOx for constructing the signal probe (GOx/Ab(2)@Au@FePor-TPA) and realizing catalytic amplification. With these satisfactory features in mind, the 2D FePor-TPA thin film and its bulk powder (FePor-TPA) were utilized to construct a dual and signal-on bioplatform for sensitively and selectively detecting S. aureus, which, as far as we know, has not been reported.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available