4.7 Article

Customized fluorescent probe for peering into the expression of butyrylcholinesterase in thyroid cancer

Journal

ANALYTICA CHIMICA ACTA
Volume 1282, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.aca.2023.341932

Keywords

Fluorescent probe; Thyroid cancer; BChE; Cell imaging; Sensors

Ask authors/readers for more resources

In this study, we developed a fluorescent probe named Kang-BChE for rapid and accurate detection of BChE in thyroid cancer cells. The probe exhibited low cytotoxicity, high stability, and good specificity, completely eliminating interference from AChE. Furthermore, we observed a positive correlation between BChE activity and H2O2 concentration in Tpc1 cells.
Background: Thyroid cancer has been increasingly prevalent in recent years. The main diagnostic methods for thyroid are B-ultrasound scan, serum detection and puncture detection. However, these methods are invasive and complex. It is a pressing need to develop non-invasive or minimally invasive methods for thyroid cancer diagnosis. Fluorescence method as a non-invasive detection method has attracted much attention. Butyrylcholinesterase (BChE) is a common enzyme in the human body, and many diseases affect its reduction. We found that BChE is also a marker for thyroid cancer. Therefore, it is of certain clinical value to explore the expression of BChE in thyroid cancer cells through a customized fluorescent probe to provide valuable experimental data and clues for studying the expression of thyroid cancer marker to reflect thyroid status. Results: In this study, we customized a fluorescent probe named Kang-BChE, which is easy to synthesize with a high yield. The experimental results show that the probe Kang-BChE can detect BChE in the linear range of 0-900 U L-1 (R2 = 0.9963), and the detection limit is as low as 3.93 U L-1 (lambda ex/em = 550/689 nm). In addition, KangBChE probes have low cytotoxicity, good specificity, and can completely eliminate interference from acetylcholinesterase (AChE). Kang-BChE showed excellent stability in the detection of complex biological samples in serum recovery experiments (95.64-103.12 %). This study was the first time using Kang-BChE to study the low expression of BChE in thyroid cancer cells (Tpc-1 cells). In addition, we observed that H2O2 concentration in Tpc1 cells was positively correlated with BChE activity. Significance: Kang-BChE is expected to be an important tool for monitoring the change of BChE content in complex biological environments due to its excellent performance. Kang-BChE can also be used to explore the influence of molecules in more organisms on the change of BChE content due to its excellent anti-interference ability. We expect that Kang-BChE can play a significant role in the clinical diagnosis and treatment of thyroid cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available