4.5 Article

Linearized buckling analysis of isotropic and composite beam-columns by Carrera Unified Formulation and dynamic stiffness method

Journal

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES
Volume 23, Issue 9, Pages 1092-1103

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/15376494.2015.1121524

Keywords

Carrera Unified Formulation; dynamic stiffness method; buckling; higher-order theories; thin-walled; beams; composites

Ask authors/readers for more resources

This article introduces a one-dimensional (1D) higher-order exact formulation for linearized buckling analysis of beam-columns. The Carrera Unified Formulation (CUF) is utilized and the displacement field is expressed as a generic N-order expansion of the generalized unknown displacement field. The principle of virtual displacements is invoked along with CUF to derive the governing equations and the associated natural boundary conditions in terms of fundamental nuclei, which can be systematically expanded according to N by exploiting an extensive index notation. After the closed form solution of the N-order beam-column element is sought, an exact dynamic stiffness (DS) matrix is derived by relating the amplitudes of the loads to those of the responses. The global DS matrix is finally processed through the application of the Wittrick-Williams algorithm to extract the buckling loads of the structure. Isotropic solid and thin-walled cross-section beams as well as laminated composite structures are analyzed in this article. The validity of the formulation and its broad range of applicability are demonstrated through comparisons of results from the literature and by using commercial finite element codes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available