4.8 Review

Multimaterial 3D and 4D Bioprinting of Heterogenous Constructs for Tissue Engineering

Journal

ADVANCED MATERIALS
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202307686

Keywords

3D/4D bioprinting; heterogenous constructs; multimaterials; tissue engineering

Ask authors/readers for more resources

Additive manufacturing (AM) has significant advantages in the fabrication of tissue engineering implants. However, many tissue constructs have anisotropic heterogeneous structures, which pose challenges for conventional AM processes. Multimaterial 3D and 4D bioprinting offer a promising solution for constructing multifunctional implants with heterogeneous structures that can better mimic the host microenvironment.
Additive manufacturing (AM), which is based on the principle of layer-by-layer shaping and stacking of discrete materials, has shown significant benefits in the fabrication of complicated implants for tissue engineering (TE). However, many native tissues exhibit anisotropic heterogenous constructs with diverse components and functions. Consequently, the replication of complicated biomimetic constructs using conventional AM processes based on a single material is challenging. Multimaterial 3D and 4D bioprinting (with time as the fourth dimension) has emerged as a promising solution for constructing multifunctional implants with heterogenous constructs that can mimic the host microenvironment better than single-material alternatives. Notably, 4D-printed multimaterial implants with biomimetic heterogenous architectures can provide a time-dependent programmable dynamic microenvironment that can promote cell activity and tissue regeneration in response to external stimuli. This paper first presents the typical design strategies of biomimetic heterogenous constructs in TE applications. Subsequently, the latest processes in the multimaterial 3D and 4D bioprinting of heterogenous tissue constructs are discussed, along with their advantages and challenges. In particular, the potential of multimaterial 4D bioprinting of smart multifunctional tissue constructs is highlighted. Furthermore, this review provides insights into how multimaterial 3D and 4D bioprinting can facilitate the realization of next-generation TE applications. Multimaterial 3D and 4D bioprinting offers unique advantages in creating heterogenous constructs that replicate human tissues. However, there is a huge gap between its technological capabilities and the application requirements. This review aims to bridge this gap by analyzing the latest research status in multimaterial 3D and 4D bioprinting of tissue constructs, providing guidance and enlightenment toward potential breakthroughs.image

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available