4.8 Article

Ultrafast and Controlled Capturing, Loading, and Release of Extracellular Vesicles by a Portable Microstructured Electrochemical Fluidic Device

Journal

ADVANCED MATERIALS
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202212000

Keywords

carbon microfibers; electrochemical devices; exosomes; extracellular vesicles; immunoaffinity; preconcentration; purification

Ask authors/readers for more resources

This study presents an electrochemical all-in-one device that can rapidly capture, load, and release extracellular vesicles (EVs). The device, composed of antibody-coated microstructured electrodes, effectively isolates EVs from various biofluids and improves EV loading with polyplexes. This portable device offers a lab-on-a-chip approach for efficient EV isolation and manipulation.
Extracellular vesicles (EVs) are secreted by all living cells and are found in body fluids. They exert numerous physiological and pathological functions and serve as cargo shuttles. Due to their safety and inherent bioactivity, they have emerged as versatile therapeutic agents, biomarkers, and potential drug carriers. Despite the growing interest in EVs, current progress in this field is, in part, limited by relatively inefficient isolation techniques. Conventional methods are indeed slow, laborious, require specialized laboratory equipment, and may result in low yield and purity. This work describes an electrochemically controlled all-in-one device enabling capturing, loading, and releasing of EVs. The device is composed of a fluidic channel confined within antibody-coated microstructured electrodes. It rapidly isolates EVs with a high level of purity from various biofluids. As a proof of principle, the device is applied to isolate EVs from skin wounds of healthy and diabetic mice. Strikingly, it is found that EVs from healing wounds of diabetic mice are enriched in mitochondrial proteins compared to those of healthy mice. Additionally, the device improves the loading protocol of EVs with polyplexes, and may therefore find applications in nucleic acid delivery. Overall, the electrochemical device can greatly facilitate the development of EVs-based technologies. A portable device that offers an all-in-one lab-on-a-chip approach, capable of separating extracellular vesicles directly from biological fluids in a simple and efficient manner, while also allowing their subsequent manipulation, is reported. The device is composed of a fluidic channel confined within antibody-coated microstructured electrodes.image

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available