4.8 Article

In Situ Covalent Reinforcement of a Benzene-1,3,5-Tricarboxamide Supramolecular Polymer Enables Biomimetic, Tough, and Fibrous Hydrogels and Bioinks

Journal

ADVANCED MATERIALS
Volume 35, Issue 35, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.202301242

Keywords

bioprinting; covalent capture; dynamic hydrogels; Supramolecular self-assembly; tissue engineering

Ask authors/readers for more resources

This article investigates a synthetic supramolecular/covalent strategy for creating a tough hydrogel with the hierarchical fibrous architecture of the extracellular matrix (ECM). The hydrogelator self-assembles to form a viscoelastic hydrogel and is reinforced by covalent intra- and interfiber cross-links, resulting in enhanced mechanical properties. The hydrogels exhibit high tensile strain and compressive strain, are shear-thinning, and can be 3D bioprinted. Additionally, the hydrogels enable the bioprinting and differentiation of human mesenchymal stromal cell (hMSC) spheroids into chondrogenic tissue.
Synthetic hydrogels often lack the load-bearing capacity and mechanical properties of native biopolymers found in tissue, such as cartilage. In natural tissues, toughness is often imparted via the combination of fibrous noncovalent self-assembly with key covalent bond formation. This controlled combination of supramolecular and covalent interactions remains difficult to engineer, yet can provide a clear strategy for advanced biomaterials. Here, a synthetic supramolecular/covalent strategy is investigated for creating a tough hydrogel that embodies the hierarchical fibrous architecture of the extracellular matrix (ECM). A benzene-1,3,5-tricarboxamide (BTA) hydrogelator is developed with synthetically addressable norbornene handles that self-assembles to form a and viscoelastic hydrogel. Inspired by collagen's covalent cross-linking of fibrils, the mechanical properties are reinforced by covalent intra- and interfiber cross-links. At over 90% water, the hydrogels withstand up to 550% tensile strain, 90% compressive strain, and dissipated energy with recoverable hysteresis. The hydrogels are shear-thinning, can be 3D bioprinted with good shape fidelity, and can be toughened via covalent cross-linking. These materials enable the bioprinting of human mesenchymal stromal cell (hMSC) spheroids and subsequent differentiation into chondrogenic tissue. Collectively, these findings highlight the power of covalent reinforcement of supramolecular fibers, offering a strategy for the bottom-up design of dynamic, yet tough, hydrogels and bioinks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available