4.8 Article

Hyperelastic, Robust, Fire-Safe Multifunctional MXene Aerogels with Unprecedented Electromagnetic Interference Shielding Efficiency

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202306884

Keywords

electromagnetic interference shielding efficiency; hyperelasticity; mechanical robustness; multifunction; MXenes

Ask authors/readers for more resources

This study reports a facile strategy for fabricating mechanically hyperelastic, air-stable, and durable MXene composite aerogels with high electromagnetic interference (EMI) shielding effectiveness. The as-prepared aerogels exhibit exceptional EMI shielding performance and high fire safety. This study provides a simple strategy for creating multifunctional aerogels with great potential for various applications.
MXene aerogels have shown great potential for many important functional applications, in particular electromagnetic interference (EMI) shielding. However, it has been a grand challenge to create mechanically hyperelastic, air-stable, and durable MXene aerogels for enabling effective EMI protection at low concentrations due to the difficulties in achieving tailorable porous structures, excellent mechanical elasticity, and desired antioxidation capabilities of MXene in air. Here, a facile strategy for fabricating MXene composite aerogels by co-assembling MXene and cellulose nanofibers during freeze-drying followed by surface encapsulation with fire-retardant thermoplastic polyurethane (TPU) is reported. Because of the maximum utilization of pore structures of MXene, and conductive loss enhanced by multiple internal reflections, as-prepared aerogel with 3.14 wt% of MXene exhibits an exceptionally high EMI shielding effectiveness of 93.5 dB, and an ultra-high MXene utilization efficiency of 2977.71 dB g g-1, tripling the values in previous works. Owing to the presence of multiple hydrogen bonding and the TPU elastomer, the aerogel exhibits a hyperelastic feature with additional strength, excellent stability, superior durability, and high fire safety. This study provides a facile strategy for creating multifunctional aerogels with great potential for applications in EMI protection, wearable devices, thermal management, pressure sensing, and intelligent fire monitoring. Hyperelastic, robust, fire-safe multifunctional MXene aerogels with superior electromagnetic interference (EMI) shielding, thermal insulation, and air/moisture resistance are created by an encapsulation strategy. The MXene aerogel shows high EMI shielding effectiveness of 93.5 dB and ultra-high EMI utilization efficiency of MXene of 2977.71 dB g g-1, resulting from efficient utilization of pore structure and multiple internal reflections.image

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available