4.8 Article

The Riddle of Dark LLZO: Cobalt Diffusion in Garnet Separators of Solid-State Lithium Batteries

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202302939

Keywords

all-solid-state batteries; cathode sintering; cation diffusion; cobalt contamination; electrochemical properties; secondary phase formation; solid-state electrolyte

Ask authors/readers for more resources

Solid-state batteries with LLZO garnet electrolyte are being widely studied as a robust and safe alternative to traditional lithium-ion batteries. This research focuses on understanding the chemical reactions between the composite LiCoO2-LLZO cathode and the LLZO separator and their impact on battery performance.
Solid-state batteries (SSBs) with a Li7La3Zr2O12 (LLZO) garnet electrolyte are attracting much attention as robust and safe alternative to conventional lithium-ion batteries. Technical challenges in the practical implementation of garnet SSBs are related to the need for high-temperature sintering, which often leads to undesirable chemical reactions with the cathode material. While these reactions are well understood for composite cathodes, very little is known about similar processes between cathode and separator during battery fabrication. This work focuses on understanding the processes between the composite LiCoO2-LLZO cathode and the LLZO separator and how they affect the battery performance. The extensive diffusion of Co-ions within LLZO, which leads to the often-observed LLZO darkening, is shown to have a significant impact on ionic conductivity, electronic conductivity, and dendrite stability of the separator. Experimental data coupled with large-scale molecular dynamics simulations uncover the diffusion mechanism for Co-ions and identify secondary phases that form during these interactions. In addition to extensive Co-ion diffusion within the grains, a non-uniform segregation of Co-ions at grain boundaries is found leading to the formation of three distinct Co-containing phases. This work offers a general approach to studying the fundamental ion diffusion processes that occur during the fabrication of oxide SSBs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available