4.8 Article

Ultra-Flexible Monolithic 3D Complementary Metal-Oxide-Semiconductor Electronics

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.202305379

Keywords

flexible CMOS electronics; high flexibility; M3D designs; inter tier vias; light recording systems

Ask authors/readers for more resources

This paper proposes a monolithic three-dimensional (M3D) CMOS design that achieves ultra-flexible electronics with high electronic performance and integration. By utilizing vertically stacked carbon nanotube and indium gallium zinc oxide transistors, this design saves area and exhibits high flexibility. It also enables the development of wearable light recorders for collecting harmful blue light.
Flexible electronics based on complementary metal-oxide-semiconductor (CMOS) technology have enabled a smart soft world. However, the trade-off among flexibility, density, and electrical performance has been a long-lasting unresolved issue. Here, a monolithic three-dimensional (M3D) CMOS design is proposed to address this problem and realize ultra-flexible electronics with high electronic-performance and integration. This design utilizes vertically stacked p-type carbon nanotube transistors and n-type indium gallium zinc oxide ones, which share common gates and drains, saving the inter tier vias required in the traditional M3D structure to reduce routing and improve flexibility. With this design, CMOS logic gates, multi-stage circuits, ring oscillators (ROs) and memory modules, are demonstrated. This design enables circuits to save up to 45% of area compared with their planar counterparts. Particularly, inverters exhibit a record-high gain of 191, and 55-stage ROs can operate well even after bending at a 500-& mu;m radius for 50 cycles, exhibiting the highest flexibility among the reported ones. The ultra-flexible and high-integration RO enables a wearable light recorder to collect harmful blue light shining into human eyes by simply attaching the circuits on a contact lens. This integration method provides possibilities for developing complex-function wearable electronics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available