4.6 Article

Flexural Behavior of Bidirectionally Graded Lattice

Journal

ADVANCED ENGINEERING MATERIALS
Volume -, Issue -, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adem.202300915

Keywords

additive manufacturing; energy absorption; flexural behavior; functionally graded lattices; three-point bending

Ask authors/readers for more resources

This study investigates the flexural behavior of different types of lattice beams and finds that bidirectional lattice beams have higher flexural stiffness and strength compared to uniform and unidirectional lattice beams. The lower strength of unidirectional lattice beams is attributed to the easier collapse of thinner lattice layers on the impact side. Furthermore, the parametric study reveals that the flexural stress and specific energy absorption capacity of bidirectional lattice beams can be enhanced by manipulating the layer density gradient.
This study aims to investigate the flexural behavior of newly designed bidirectionally graded lattice beams with body-centered cubic unit cells made of stainless steel 316 L. Uniform and unidirectionally graded lattice beams are also studied for comparison. All the lattice beams are fabricated by electron beam melting and tested under quasi-static bending loads. The experimental results reveal that the flexural stiffness and strength of bidirectional lattice beams are higher than those of both the uniform and unidirectional counterparts. The unidirectional lattice beams display the lowest strength owing to the easier collapse of thinner lattice layers on the impact side with the indenter. Finite element models, developed and validated using the experimental results, are used to evaluate the effects of the density gradient and the loading velocity on the performance of bidirectional lattice beams. The parametric study shows that the flexural stress and the specific energy absorption capacity of bidirectional functionally graded lattice beams increase with increasing loading velocity and can be enhanced by manipulating the layer density gradient.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available