4.7 Article

Nature of the electric double layer to modulate the electrochemical behaviors of Fe2O3 electrode

Journal

ACTA MATERIALIA
Volume 263, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2023.119500

Keywords

Electric double layer; Inner helmholtz plane; Specific adsorption; Pseudocapacitance

Ask authors/readers for more resources

The interaction between the electrode and the electric double layer (EDL) significantly influences the energy storage mechanism. By studying the popular alpha-Fe2O3 electrode and the EDL interaction, we find that the energy storage mechanism of the electrode can be controlled by modulating the EDL.
The electric double layer (EDL) has been found to play a critical role in not only electric double-layer capacitors (EDLCs) but also batteries and electrocatalysts. Although the influence of EDLs on the electrochemical behaviors of electrolytes has been extensively investigated, its influence on the electrode itself, particularly the energy storage mechanism, remains unclear. Herein, using popular alpha-Fe2O3, we look into the interaction between electrode and EDL and find the energy storage mechanism of an electrode can be tuned by modulating EDL. The EDL, which is mainly influenced by the inner Helmholtz plane (IHP) through the specific adsorption of ions onto the surface of Fe2O3, determines which ions are present at the interface and how they react with the electrode. Ultimately, the composition and properties of the EDL determine the energy storage mechanism of an Fe2O3 electrode, including conversion reaction, ions insertion, surface redox reaction and pseudocapacitance. Our results not only provide a new understanding on the nature of the EDL but also demonstrate that the EDL should be promoted as a functional component which can be designed for achieving the optimum synergy of an electrodeelectrolyte interface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available