4.7 Article

Selective oxidation and nickel enrichment hinders the repassivation kinetics of multi-principal element alloy surfaces

Journal

ACTA MATERIALIA
Volume 263, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2023.119490

Keywords

Multi-principal element alloys; High entropy alloys; Corrosion; Tribocorrosion; Repassivation

Ask authors/readers for more resources

In this study, the structural origin of the pH-dependent repassivation mechanisms in multi-principal element alloys (MPEA) was investigated using surface characterization and computational simulations. It was found that selective oxidation in acidic to neutral solutions leads to enhanced nickel enrichment on the surface, resulting in reduced repassivation capability and corrosion resistance.
Robust and sustained corrosion resistance in multi-principal element alloys (MPEA) requires rapid repassivation, i.e. regrowth of the passive layer once it is damaged or destroyed at the surface. In this study, we show that the repassivation of Al0.1CrCoFeNi MPEA in 0.6 M NaCl solution is hindered at pH of - 2.4 - 6.8 due to the formation of a Ni-enriched subsurface layer as a result of selective oxidation and dissolution of several principal elements, which can be fully restored at pH of - 14 from the oxidation of all principal elements. Specifically, surface characterization via X-ray photoelectron spectroscopy (XPS), high-angle annular dark-field (HAADF) imaging in scanning transmission electron microscopy (STEM), and atom probe tomography (APT), are coupled with density functional theory (DFT) calculations to determine surface composition, oxidation state, and electron work function to uncover the structural origin of the pH-dependent repassivation mechanisms. It was found that selective oxidation of Cr, Co, and Fe in the acidic to neutral solutions altered the surface composition to be significantly enriched in Ni as compared to the bulk. Once the original passive film is destroyed locally by either pitting or tribocorrosion, this altered surface composition exhibited a much poorer repassivation capability due to the increased electron work function and reduced surface reactivity at higher Ni concentration. These understandings could shed light on the future compositional design of non-equiatomic MPEAs towards sustained repassivation and corrosion resistance over a wide pH range.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available