4.7 Article

Phase-dependent microstructure modification leads to high thermoelectric performance in n-type layered SnSe2

Journal

ACTA MATERIALIA
Volume 263, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2023.119504

Keywords

Layered compounds; Phase regulation; Stacking faults; Carrier mobility; Thermoelectrics

Ask authors/readers for more resources

This study proposes a new strategy to modify microstructure by phase regulation, which can simultaneously enhance carrier mobility and reduce lattice thermal conductivity. The addition of Cu in layered SnSe2 induces a phase transition that leads to increased grain size and reduced stacking fault density, resulting in improved carrier mobility and lower lattice thermal conductivity.
Microstructure control is crucial for thermoelectrics since it is intimately related to the scattering mechanism of both electrons and phonons. Herein, we propose a new strategy to modify microstructure by phase regulation that simultaneously induces high carrier mobility and low lattice thermal conductivity. As demonstrated in layered SnSe2, the addition of Cu can induce a phase transition from space group P3m1 to P63mc. Due to the enlarged formation energy of stacking faults in the later phase, the stacking fault density is greatly reduced after heat treatment that leads to an increased grain size. Accordingly, the carrier mobility of SnSe1.97Br0.03-3 % Cu sample is enhanced by 100 % at room temperature. Furthermore, the reduction of stacking fault density is accompanied by the formation of pores in the matrix, which results in low lattice thermal conductivity. As a result, a record peak zT of 1.13 for SnSe2-based materials is achieved at 773 K, and the attained ZTave of 0.62 is a record-high value among n-type polycrystalline layered materials working in intermediate-to-high temperature region. This work provides a feasible strategy to decouple the electron and phonon transport in layered thermoelectric compounds by phase-dependent microstructure modification.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available