4.7 Article

Unraveling kinking: A plasticity enhancing failure mode in high strength nano metallic laminates

Journal

ACTA MATERIALIA
Volume 260, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2023.119342

Keywords

Kinking; Nano metallic laminates; In situ compression; Strain-gradient crystal plasticity; Dislocation dynamics

Ask authors/readers for more resources

This study investigates the dependence of kinking on microstructural attributes in NMLs through in situ micropillar compression, microstructure characterization, simulations, and modeling. The development of internal stresses during loading activates local layer-parallel glide triggering kinking in NMLs. The effect of key microstructural features on kink band formation in NMLs is also revealed.
Kinking is an important and plasticity-enhancing deformation/failure mode in numerous mechanically anisotropic materials including high-strength nano metallic laminates (NMLs). However, our current limited understanding of the mechanics of kinking and its dependence on microstructural attributes is insufficient for thoroughly comprehending and eventually being able to control failure behaviors of materials. In this study, we investigate kinking dependencies on microstructural attributes in NMLs via in situ micropillar compression, multiscale microstructure characterization, dislocation dynamic simulations, and crystal plasticity modeling. By examining several NML systems (Cu/Fe, Ag/Fe, Al-4Mg/Fe), we demonstrate that the development of internal stresses during loading activates local layer-parallel glide triggering kinking in NMLs. Furthermore, this work reveals the effect of key microstructural features including layer thickness, layer waviness, interface barrier strength, and work hardening capacity on kink band formation in NMLs. More broadly, our efforts represent a generically applicable approach for probing large-strain deformation behavior of complex materials via synergetic modeling and experimental efforts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available