4.8 Article

Nanoscale ZnO Improves the Amino Acids and Lipids in Tomato Fruits and the Subsequent Assimilation in a Simulated Human Gastrointestinal Tract Model

Journal

ACS NANO
Volume -, Issue -, Pages -

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.3c04990

Keywords

ZnO quantum dots; tomato fruits; simulatedhuman gastrointestinal tract (GIT); mineral bioaccessibility; digestive enzyme activity; metabolomic analysis

Ask authors/readers for more resources

The study demonstrates that the use of nanoscale zinc can increase the nutritional value of vegetable crops without interfering with human digestion.
With the widespread use of nanoenabled agrochemicals, it is essential to evaluate the food safety of nanomaterials (NMs)-treated vegetable crops in full life cycle studies as well as their potential impacts on human health. Tomato seedlings were foliarly sprayed with 50 mg/L ZnO NMs, including ZnO quantum dots (QDs) and ZnO nanoparticles once per week over 11 weeks. The foliar sprayed ZnO QDs increased fruit dry weight and yield per plant by 39.1% and 24.9, respectively. It also significantly increased the lycopene, amino acids, Zn, B, and Fe in tomato fruits by 40.5%, 15.1%, 44.5%, 76.2%, and 12.8%, respectively. The tomato fruit metabolome of tomatoes showed that ZnO NMs upregulated the biosynthesis of unsaturated fatty acids and sphingolipid metabolism and elevated the levels of linoleic and arachidonic acids. The ZnO NMs-treated tomato fruits were then digested in a human gastrointestinal tract model. The results of essential mineral release suggested that the ZnO QDs treatment increased the bioaccessibility of K, Zn, and Cu by 14.8-35.1% relative to the control. Additionally, both types of ZnO NMs had no negative impact on the alpha-amylase, pepsin, and trypsin activities. The digested fruit metabolome in the intestinal fluid demonstrated that ZnO NMs did not interfere with the normal process of human digestion. Importantly, ZnO NMs treatments increased the glycerophospholipids, carbohydrates, amino acids, and peptides in the intestinal fluids of tomato fruits. This study suggests that nanoscale Zn can be potentially used to increase the nutritional value of vegetable crops and can be an important tool to sustainably increase food quality and security.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available