4.8 Article

Cellular Export Fate of Liposomal Spherical Nucleic Acids

Journal

ACS NANO
Volume -, Issue -, Pages -

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.3c04608

Keywords

spherical nucleic acids; cellular export; liposomes; macrophages; phospholipases

Ask authors/readers for more resources

Liposomal spherical nucleic acids (LSNAs) are effective structures for cell modulation through oligonucleotides. This study investigates the export fate of LSNA and finds that the components of LSNA are differentially exported by cells. The output materials are degraded into lysophospholipids, and these findings suggest avenues for leveraging pharmacologic effects from exported LSNA components.
Liposomal spherical nucleic acids (LSNAs) are useful structures for oligonucleotide-based cell modulation because of their biocompatibility and ability to readily enter cells without transfection agents. Understanding LSNA trafficking is key to developing applications, but while much is understood about LSNA cell uptake, little is known about their export fate. Here, we study LSNA export through pulse-chase studies with fluorophore-labeled LSNAs. Our findings show that the components of LSNAs are differentially exported by cells, with the phospholipids showing 90-100% export and the oligonucleotides showing 30-45% export over 24 h in RAW264.7 macrophages. Despite the increase in the level of uptake of LSNAs, these percentages are not significantly influenced by whether the materials are taken up as LSNAs or as the individual components. The exported oligonucleotide material consists of a full-length oligonucleotide with the phospholipid anchor modified by loss of a fatty acid. The exported liposome-derived phospholipids also had a fatty acid removed. Moreover, the exported oligonucleotide-lysophospholipid conjugates retain immunostimulatory potential. These findings indicate that after cellular entry LSNAs are degraded into lysophospholipids, something to which they are susceptible due to the presence of hydrolyzable ester bonds. The export percentage of the resultant materials over 24 h is independent of the amount imported, such that greater initial import leads to a similar fold increase in exported material. This work therefore reveals an intracellular feature of LSNAs and shows that the enhanced uptake achieved with LSNAs can be exploited to maximize the amount of material subsequently exported, suggesting avenues for leveraging pharmacologic effects from exported LSNA components.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available