4.8 Article

Tuning the Photoluminescence Anisotropy of Semiconductor Nanocrystals

Journal

ACS NANO
Volume 17, Issue 19, Pages 19109-19120

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.3c05214

Keywords

nanocrystals; shape; anisotropy; polarization; dipole; wurtzite; zincblende

Ask authors/readers for more resources

This study investigates the photoluminescence anisotropy of CdSe semiconductor nanocrystals experimentally and theoretically. By visualizing emission dipole orientation using defocused wide-field microscopy, it is found that different shaped nanocrystals exhibit different optical properties. The differences in defocused emission patterns of rods and long nanoplatelets are explained by considering valence band structures calculated using multiband effective mass theory and the dielectric effect.
Semiconductor nanocrystals are promising optoelectronic materials. Understanding their anisotropic photoluminescence is fundamental for developing quantum-dot-based devices such as light-emitting diodes, solar cells, and polarized single-photon sources. In this study, we experimentally and theoretically investigate the photoluminescence anisotropy of CdSe semiconductor nanocrystals with various shapes, including plates, rods, and spheres, with either wurtzite or zincblende structures. We use defocused wide-field microscopy to visualize the emission dipole orientation and find that spheres, rods, and plates exhibit the optical properties of 2D, 1D, and 2D emission dipoles, respectively. We rationalize the seemingly counterintuitive observation that despite having similar aspect ratios (width/length), rods and long nanoplatelets exhibit different defocused emission patterns by considering valence band structures calculated using multiband effective mass theory and the dielectric effect. The principles are extended to provide general relationships that can be used to tune the emission dipole orientation for different materials, crystalline structures, and shapes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available