4.8 Article

The Effect of Nanoparticle Composition on the Surface-Enhanced Raman Scattering Performance of Plasmonic DNA Origami Nanoantennas

Journal

ACS NANO
Volume 17, Issue 21, Pages 21227-21239

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.3c05464

Keywords

DNA origami; Surface-enhanced Raman scattering; Plasmonics; Single molecules; Plasmonic nanoparticles; Anisotropicnanoparticles; Discontinuous Galerkin timedomain method

Ask authors/readers for more resources

A versatile generation of plasmonic nanoparticle dimers for surface-enhanced Raman scattering (SERS) is presented, which combines a DNA origami nanofork and spherical and nonspherical Au or Ag nanoparticles. By optimizing the plasmonic nanoparticle dimers for a specific excitation wavelength in SERS, the structures and measurement conditions with the highest SERS enhancement factors (EFs) suitable for single-molecule SERS (SM-SERS) are identified. Anisotropic nanoparticles with sharp edges, such as nanoflowers, increase the probability of placing single molecules in strongly enhancing hot spots for SM-SERS. The combination of a Ag nanoparticle and a Au nanoflower is the most versatile plasmonic dimer structure for SERS.
A versatile generation of plasmonic nanoparticle dimers for surface-enhanced Raman scattering (SERS) is presented by combining a DNA origami nanofork and spherical and nonspherical Au or Ag nanoparticles. Combining different nanoparticle species with a DNA origami nanofork to form DNA origami nanoantennas (DONAs), the plasmonic nanoparticle dimers can be optimized for a specific excitation wavelength in SERS. The preparation of such nanoparticle dimers is robust enough to enable the characterization of SERS intensities and SERS enhancement factors of dye-modified DONAs on a single dimer level by measuring in total several thousands of dimers from five different dimer designs, each functionalized with three different Raman reporter molecules and measured at four different excitation wavelengths. Based on these data, SERS enhancement factor (EF) distributions have been determined for each dimer design and excitation wavelengths. The structures and measurement conditions with the highest EFs are suitable for single-molecule SERS (SM-SERS), which is realized by placing single dye molecules into hot spots. We demonstrate that the probability of placing single molecules in a strongly enhancing hot spot for SM-SERS can be increased by using anisotropic nanoparticles with several sharp edges, such as nanoflowers. Combining a Ag nanoparticle with a Au particle in one dimer structure allows for a broadband excitation covering almost the whole visible range. The most versatile plasmonic dimer structure for SERS combines a spherical Ag nanoparticle with a Au nanoflower. Employing the discontinuous Galerkin time domain method, we numerically investigate the bare, symmetric dimers with respect to spectral and near-field properties, showing that, indeed, the nanoflowers induce multiple hot spots located at the edges which surpass the intensity of the spherical dimers, indicating the possibility for SM-SERS. The presented DONA structures and SERS data provide a robust basis for applying such designs as versatile SERS tags and as substrates for SM-SERS measurements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available