4.8 Article

Renewable Energy from Livestock Waste Valorization: Amyloid-Based Feather Keratin Fuel Cells

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 15, Issue 40, Pages 47049-47057

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.3c10218

Keywords

valorization; biomaterials; amyloidfibrils; membrane; proton conduction; fuelcells

Ask authors/readers for more resources

Increasing carbon emissions have led to accelerated climate change, calling for a shift towards greener materials and sustainable manufacturing processes. Biobased industrial byproducts, such as chicken feather waste, have the potential to be converted into renewable energy materials. In this study, chicken feathers were processed to create proton-conductive membranes for fuel cells, protonic transistors, and water-splitting devices. The membranes demonstrated good functionality and conductivity. By converting industrial waste into low-cost and scalable renewable energy materials, this green manufacturing process can contribute to a fully circular economy with a neutral carbon footprint.
Increasing carbon emissions have accelerated climate change, resulting in devastating effects that are now tangible on an everyday basis. This is mirrored by a projected increase in global energy demand of approximately 50% within a single generation, urging a shift from fossil-fuel-derived materials toward greener materials and more sustainable manufacturing processes. Biobased industrial byproducts, such as side streams from the food industry, are attractive alternatives with strong potential for valorization due to their large volume, low cost, renewability, biodegradability, and intrinsic material properties. Here, we demonstrate the reutilization of industrial chicken feather waste into proton-conductive membranes for fuel cells, protonic transistors, and water-splitting devices. Keratin was isolated from chicken feathers via a fast and economical process, converted into amyloid fibrils through heat treatment, and further processed into membranes with an imparted proton conductivity of 6.3 mS cm(-1 )using a simple oxidative method. The functionality of the membranes is demonstrated by assembling them into a hydrogen fuel cell capable of generating 25 mW cm(-2) of power density to operate various types of devices using hydrogen and air as fuel. Additionally, these membranes were used to generate hydrogen through water splitting and in protonic field-effect transistors as thin-film modulators of protonic conductivity via the electrostatic gating effect. We believe that by converting industrial waste into renewable energy materials at low cost and high scalability, our green manufacturing process can contribute to a fully circular economy with a neutral carbon footprint.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available