4.8 Article

Interfacial Modification of a Zn Anode by Amorphous Se toward Long-Life and Hydrogen Evolution-Free Aqueous Rechargeable Batteries

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 15, Issue 41, Pages 48225-48234

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.3c10691

Keywords

Zn metal anode; Zn-ion batteries; dendrite; selenium; solvation

Ask authors/readers for more resources

The performance of the Zn anode in rechargeable aqueous Zn-ion batteries is greatly improved by coating it with an amorphous selenium overlayer. This coating helps to inhibit hydrogen gas evolution and dendrite growth, leading to improved rate performance and an ultralong cycle life. Furthermore, the amorphous selenium overlayer induces the formation of an amorphous ZnO nanosheet network, which plays a key role in enhancing the Zn anode performance.
The Zn anode in rechargeable aqueous Zn-ion batteries suffers from hydrogen gas evolution and dendrite growth, which are critical issues that make the battery impractical. Here, the Zn anode performance is greatly improved by coating an amorphous selenium overlayer with a simple chemical bath reaction process. The reduction of SeO32- ions by the Zn metal leads to the formation of an amorphous Se layer, and the optimal reaction time that determines the thickness of the Se coating as well as the Zn anode performance is found to be 2 h. The symmetric cell using Zn@Se exhibits improved rate performance and an ultralong cycle life of 4500 h after being tested at 1 mA cm(-2) and 1 mAh cm(-2), respectively. Compared to the bare Zn anode, the Zn@Se anode leads to a larger Zn2+ transference number and reduced charge transfer resistance. The button-type MnO2||Zn@Se full cell exhibits higher capacity and a much longer cycle life compared to the counterpart using a bare Zn anode. Also, pouch-type MnO2||Zn@Se full cells with a high capacity of 9.7 mAh cm(-2) are made to demonstrate the inhibition of hydrogen evolution and practical applications. It is found that the in situ formation of an amorphous ZnO nanosheet network induced by the amorphous Se overlayer plays a key role in enhancing the Zn anode performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available