4.8 Article

Synergistic Surface Defect Passivation of Ionic Liquids for Efficient and Stable MAPbI3-Based Inverted Perovskite Solar Cells

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 15, Issue 39, Pages 46483-46492

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.3c08827

Keywords

halide defect; stability; defect passivation; perovskite solar cell; interfacial modification

Ask authors/readers for more resources

Organic-inorganic hybrid perovskite solar cells with high-quality perovskite thin films passivated by an ionic liquid (DADA) exhibit improved device performance, including increased power conversion efficiency and enhanced stability. The DADA treatment reduces surface defects and improves film morphology, leading to reduced charged defects and prolonged carrier lifetime. The increase in work function and passivation of ion defects contribute to better carrier transport.
Organic-inorganic hybrid perovskite solar cells are fabricated using polycrystalline perovskite thin films, which possess high densities of point and surface defects. The surface defects of perovskite thin films are the key factors that affect the device performance. Therefore, the reduction of harmful defects is the primary task for improving device performance. Therefore, in this study, high-quality perovskite thin films are prepared using an ionic liquid, dithiocarbamate diethylamine (DADA), to passivate the interface. The electron-rich sulfur atom in the DADA molecule chelates with the uncoordinated lead ion in the perovskite films, and the diethylammonium cation forms a hydrogen bond with the free iodine ion, which further improves the passivation. The synergistic passivation and improved morphology of the perovskite thin films substantially reduce the number of charged defects on the film surface and prolong the carrier lifetime. In addition, the DADA surface treatment increases the work function of the perovskite film, which is beneficial for carrier transport. Under standard solar-lighting conditions, the power conversion efficiency (PCE) of the device increases from 19.13 to 21.36%, and the fill factor is as high as 83.17%. Owing to both the hydrophobicity of DADA molecules and the passivation of ion defects, the PCE of the device remains above 80%, even for the device stored for 500 h in air at a relative humidity of 65%, and the device stability is substantially improved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available