4.8 Article

In Vivo Bone Regeneration Capacity of Multiscale Porous Polycaprolactone-Based High Internal Phase Emulsion (PolyHIPE) Scaffolds in a Rat Calvarial Defect Model

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 15, Issue 23, Pages 27696-27705

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.3c04362

Keywords

polycaprolactone; emulsion templating; 3D printing; stereolithography; bone tissue engineering; multiscale porosity; in vivo; rat calvarial defect

Ask authors/readers for more resources

This study compared the performance of different structures of polymer porous materials in bone regeneration in vivo, and found that multiscale porous materials containing micro- and macropores had the best bone regeneration effect in the defect area.
Globally, one of the most common tissue transplantationproceduresis bone grafting. Lately, we have reported the development of polymerizedhigh internal phase emulsions (PolyHIPEs) made of photocurable polycaprolactone(4PCLMA) and shown their potential to be used as bone tissue engineeringscaffolds in vitro. However, it is essential to evaluatethe in vivo performance of these scaffolds to investigatetheir potential in a clinically more relevant manner. Therefore, inthis study, we aimed to compare in vivo performancesof macroporous (fabricated using stereolithography), microporous (fabricatedusing emulsion templating), and multiscale porous (fabricated usingemulsion templating and perforation) scaffolds made of 4PCLMA. Also,3D-printed macroporous scaffolds (fabricated using fused depositionmodeling) made of thermoplastic polycaprolactone were used as a control.Scaffolds were implanted into a critical-sized calvarial defect, animalswere sacrificed 4 or 8 weeks after implantation, and the new boneformation was assessed by micro-computed tomography, dental radiography,and histology. Multiscale porous scaffolds that include both micro-and macropores resulted in higher bone regeneration in the defectarea compared to only macroporous or only microporous scaffolds. Whenone-grade porous scaffolds were compared, microporous scaffolds showedbetter performance than macroporous scaffolds in terms of mineralizedbone volume and tissue regeneration. Micro-CT results revealed thatwhile bone volume/tissue volume (Bv/Tv) values were 8 and 17% at weeks4 and 8 for macroporous scaffolds, they were significantly higherfor microporous scaffolds, with values of 26 and 33%, respectively.Taken together, the results reported in this study showed the potentialapplication of multiscale PolyHIPE scaffolds, in particular, as apromising material for bone regeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available