4.2 Article

Self Adaptive Logical Split Cache Techniques for Delayed Aging of NVM LLC

Publisher

ASSOC COMPUTING MACHINERY
DOI: 10.1145/3616871

Keywords

Non volatile memory; wear-leveling; STT-RAM; last-level cache

Ask authors/readers for more resources

Due to the limitations of traditional memory technologies, researchers have proposed emerging non-volatile memory technologies. However, these technologies have limited write endurance, highlighting the need for a strategy to prolong memory lifespan.
Due to the technological advancements in the last few decades, several applications have emerged that demand more computing power and on-chip and off-chip memories. However, the scaling of memory technologies is not at par with computing throughput of modern day multi-core processors. Conventional memory technologies such as SRAM and DRAM have technological limitations to meet large on-chip memory requirements owing to their low packaging density and high leakage power. In order to meet the ever-increasing demand for memory, researchers came up with alternative solutions, such as emerging non-volatile memory technologies such as STT-RAM, PCM, and ReRAM. However, these memory technologies have limited write endurance and high write energy. This emphasizes the need for a policy that will reduce the writes or distribute the writes uniformly across the memory thereby enhancing its lifetime by delaying the early wear out of memory cells due to frequent writes. We propose two techniques, Enhanced-Virtually Split Cache (E-ViSC) and Protean-Virtually Split Cache (P-ViSC), which dynamically adjust the cache configuration to distribute the writes uniformly across the memory to enhance the lifetime. Experimental studies show that E-ViSC and P-ViSC improve lifetime of NVM L2 caches by upto 2.31x and 1.97x respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available