4.2 Review

Development and challenges in perovskite scintillators for high-resolution imaging and timing applications

Journal

COMMUNICATIONS MATERIALS
Volume 4, Issue 1, Pages -

Publisher

SPRINGERNATURE
DOI: 10.1038/s43246-023-00348-5

Keywords

-

Ask authors/readers for more resources

This Review discusses recent advances and strategies to improve the light yield, decay time, and coincidence timing resolution of all-inorganic and hybrid organic-inorganic perovskite scintillators. Inorganic scintillators play a major role in ionizing radiation detection and have various applications in medical imaging, homeland security, high-energy physics, industrial control, oil drilling explorations, and energy management.
Scintillators are materials of great interest for versatile and fast radiation detection systems. This Review discusses recent advances and strategies to improve the light yield, decay time, and coincidence timing resolution of all-inorganic and hybrid organic-inorganic perovskite scintillators. Inorganic scintillators play a major role in ionizing radiation detection due to their high versatility to detect multiple radiation sources such as X-rays, gamma-rays, alpha, beta, and neutron particles, and their fast and high light yield, making them especially convenient for imaging, spectroscopy, and timing applications. Scintillators-based detection systems are found, among various applications, in medical imaging, homeland security, high-energy physics, industrial control, oil drilling explorations, and energy management. This Review discusses advances and prospects of perovskite scintillators, particularly low-dimensional hybrid organic-inorganic perovskite crystals and all-inorganic perovskite nanocrystals. We highlight the promise of two-dimensional lithium-doped (PEA)(2)PbBr4 crystals and CsPbBr3 nanocrystals as scintillators with high light yields, exceeding 20 photons/keV, and fast decay times of less than 15 ns. Such a combination may result in fast-spectral X-ray imaging, an output count rate exceeding 30 Mcps/pixel in photon-counting computed tomography, and coincidence timing resolution of less than 100 ps in positron emission tomography. We review recent strategies to further improve light yield, decay time, and coincidence timing resolution through light-matter interactions such as extraction efficiency enhancement and Purcell-enhanced scintillators. These advancements in light yields and decay times of perovskite scintillators will be particularly useful in the medical and security applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available