4.3 Article

Short-Term Speed Prediction Using Remote Microwave Sensor Data: Machine Learning versus Statistical Model

Journal

MATHEMATICAL PROBLEMS IN ENGINEERING
Volume 2016, Issue -, Pages -

Publisher

HINDAWI LTD
DOI: 10.1155/2016/9236156

Keywords

-

Funding

  1. National Natural Science Foundation of China [51138003, 51329801, G030601]
  2. Natural Science Foundation of Heilongjiang Province [QC2013C047]
  3. Hi-Tech Research and Development Program of China [2014BAG03B04]

Ask authors/readers for more resources

Recently, a number of short-term speed prediction approaches have been developed, in which most algorithms are based on machine learning and statistical theory. This paper examined the multistep ahead prediction performance of eight different models using the 2-minute travel speed data collected from three Remote Traffic Microwave Sensors located on a southbound segment of 4th ring road in Beijing City. Specifically, we consider five machine learning methods: Back Propagation Neural Network (BPNN), nonlinear autoregressive model with exogenous inputs neural network (NARXNN), support vector machine with radial basis function as kernel function (SVM-RBF), Support Vector Machine with Linear Function (SVM-LIN), and Multilinear Regression (MLR) as candidate. Three statistical models are also selected: Autoregressive Integrated Moving Average (ARIMA), Vector Autoregression (VAR), and Space-Time (ST) model. From the prediction results, we find the following meaningful results: (1) the prediction accuracy of speed deteriorates as the prediction time steps increase for all models; (2) the BPNN, NARXNN, and SVM-RBF can clearly outperform two traditional statistical models: ARIMA and VAR; (3) the prediction performance of ANN is superior to that of SVM and MLR; (4) as time step increases, the ST model can consistently provide the lowest MAE comparing with ARIMA and VAR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available