4.1 Review

A Review on Thermal Behaviors and Thermal Management Systems for Supercapacitors

Journal

BATTERIES-BASEL
Volume 9, Issue 2, Pages -

Publisher

MDPI
DOI: 10.3390/batteries9020128

Keywords

supercapacitor; energy storage mechanism; heat generation rate; thermal management system

Ask authors/readers for more resources

As a representative electrochemical energy storage device, supercapacitors (SCs) have higher energy density than traditional capacitors and better power density and cycle life than lithium-ion batteries, making them extensively used in energy storage. However, there is a lack of understanding of the thermal behaviors and thermal management systems of SCs, which this review aims to address. The review introduces the energy storage mechanisms of SCs and current investigations of thermal behaviors, including heat generation rates, experimental methods, heat generation rate models, and thermal runaway. It also provides an overview of current efforts in different cooling systems and discusses the challenges and future work directions for SCs in thermal behaviors and thermal management systems.
As a representative electrochemical energy storage device, supercapacitors (SCs) feature higher energy density than traditional capacitors and better power density and cycle life compared to lithium-ion batteries, which explains why they are extensively applied in the field of energy storage. While the available reviews are mainly concerned with component materials, state estimation, and industrial applications, there is a shortage of understanding of thermal behaviors and thermal management systems of SCs, which makes this review a timely aide for fulfilling this gap. This review introduces the energy storage mechanisms of SCs, followed by descriptions of current investigations of thermal behaviors. This covers the aspects of heat generation rates for electric double-layer capacitors (EDLCs) and hybrid supercapacitors (HSCs), together with reviewing existing experimental methods to measure and estimate heat generation rates, as well as comparative assessments of multiple heat generation rate models and research on thermal runaway. In addition, there are also overviews of current efforts by researchers in air cooling systems, liquid cooling systems, phase change material cooling systems, and heat pipe cooling systems. Finally, an in-depth discussion is provided regarding the challenges and future work directions for SCs in thermal behaviors and thermal management systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available