4.6 Article

Dislocation-mediated plasticity in silicon during nanometric cutting: A molecular dynamics simulation study

Journal

MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING
Volume 51, Issue -, Pages 60-70

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.mssp.2016.05.003

Keywords

Molecular dynamics; Dislocation nucleation; Amorphization; Nanometric cutting; Single crystalline silicon

Funding

  1. EPSRC [EP/K018345/1, EP/K000586/1]
  2. Royal Society-NSFC International Exchange Programme [IE141422]
  3. National Science Foundation [ACI-1053575]
  4. EPSRC [EP/K031260/1, EP/K000586/1, EP/K018345/1] Funding Source: UKRI
  5. Engineering and Physical Sciences Research Council [EP/K000586/1, EP/K031260/1, EP/K018345/1] Funding Source: researchfish

Ask authors/readers for more resources

The nucleation and propagation of dislocations and its consequence on the defect structure in silicon during nanometric cutting are not well known, although the amorphization and high pressure phase transformation studies on silicon have remained at the epicentre of research across various disparate disciplines for over a decade. This paper proposes a new mechanism of crystal plasticity identified by a fully automated dislocation extraction algorithm in molecular dynamics simulations of nanometric cutting of silicon for different cutting planes/directions at a wide range of temperatures (300-1500 K). Alongside amorphization of silicon, our simulations revealed nanoscale stochastic nucleation of dislocations and stacking faults, which serve as mediators of microscopic plasticity during various contact loading operations and manufacturing processes of silicon. Of interest is that, irrespective of the cutting temperature, the stacking faults, which were not formed for either the (010)[(1) over bar 00] or (in Viol crystal setups, were generated with three atomic layers in the (110)[00 (1) over bar] cutting. (C) 2016 The Authors. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available