3.8 Article

Rapid detection of radiation susceptible regions in electronics

Journal

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B
Volume 41, Issue 4, Pages -

Publisher

A V S AMER INST PHYSICS
DOI: 10.1116/6.0002689

Keywords

-

Ask authors/readers for more resources

The susceptibility of electronics to radiation increases as the size and complexity of electronic chips or systems increase. This study develops an indirect technique to identify radiation-susceptible regions and demonstrates its effectiveness in rapid detection.
Radiation susceptibility of electronics has always been about probing electrical properties in either transient or time-accumulated phenomena. As the size and complexity of electronic chips or systems increase, detection of the most vulnerable regions becomes more time consuming and challenging. In this study, we hypothesize that localized mechanical stress, if overlapping electrically sensitive regions, can make electronic devices more susceptible to radiation. Accordingly, we develop an indirect technique to map mechanical and electrical hotspots to identify radiation-susceptible regions of the operational amplifier AD844 to ionizing radiation. Mechanical susceptibility is measured using pulsed thermal phase analysis via lock-in thermography and electrical biasing is used to identify electrically relevant regions. A composite score of electrical and mechanical sensitivity was constructed to serve as a metric for ionizing radiation susceptibility. Experimental results, compared against the literature, indicate effectiveness of the new technique in the rapid detection of radiation-vulnerable regions. The findings could be attractive for larger systems, for which traditional analysis would take -two to three orders of magnitude more time to complete. However, the indirect nature of the technique makes the study more approximate and in need for more consistency and validation efforts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available