4.7 Article

Effect of heat treatment on the temperature dependence of the fracture behavior of X-750 alloy

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2016.09.081

Keywords

Nickel super-alloy; X-750; Fracture mechanisms; Tensile tests; Heat treatment

Ask authors/readers for more resources

X-750 is a nickel-chromium based super alloy of usefulness in a wide variety of applications such as gas turbines, rocket engines, nuclear reactors, pressure vessels, tooling, and aircraft structures. Its good mechanical properties are due to the strengthening from precipitation of 'gamma' particles upon prior ageing heat treatment. In this work, the effect of such heat treatment on the fracture mechanisms of X-750 was studied at various temperatures by comparing it with a non-aged, solution annealed X-750. Tensile tests were conducted from room temperatures up to 900 degrees C; fracture surfaces were analyzed by means of SEM observations. In addition, the microstructure of both aged and solution annealed materials were studied using SEM and TEM, both on as received and on tested specimens. In terms of mechanical properties, as expected, the yield strength and the ultimate tensile strength of the aged material were better than for the solution-annealed one, and only slightly decreased with increasing temperature when tested between room temperatures and 650 degrees C. In this range of temperature, the fracture surface of aged material evolves from purely intergranular to purely transgranular due to the thermal activation of dislocation mobility that relieves the stress at the grain boundaries, while the rupture of the solution annealed material is due to the coalescence of voids induced by decohesion at the MC carbides/matrix interface. At higher temperatures, precipitation of y' particles upon testing of the solution-annealed material leads to a temperature-dependent increase in both yield strength and ultimate tensile strength, which nevertheless remain below the aged material ones with the exception of the higher temperatures. At the same time, an overall decrease of the aged material mechanical properties is observed. Minimum ductility was observed at 750 degrees C for both solution annealed and aged specimen, due to the oxidation of grain boundaries leading to an environmentally-induced fracture mechanism. At higher temperatures, dynamic recovery and dynamic recrystallization occur which prevents such a rupture mechanism, but finally leads to rupture by grain boundary slipping at 900 degrees C. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available