4.3 Article

A protein-repellent and antibacterial nanocomposite for Class-V restorations to inhibit periodontitis-related pathogens

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.msec.2016.05.080

Keywords

Dental composite; Class V restoration; Antibacterial; Protein repellent; Calcium phosphate nanoparticle; Periodontal pathogens

Funding

  1. NIH [R01 DE17974]
  2. National Science Foundation of China [81400487, 81200820]
  3. Youth Fund of Science and Technology of Jilin Province [20150520043JH]
  4. China Postdoctoral Science Foundation [2015M581405]
  5. China Scholarship Council
  6. University of Maryland School of Dentistry bridging fund
  7. University of Maryland

Ask authors/readers for more resources

The objectives of this study were to develop a bioactive dental composite and investigate the effects of 2-methacryloyloxyethyl phosphorylcholine (MPC) and dimethylaminohexadecyl methacrylate (DMAHDM) in Class V composite on mechanical properties, water sorption, protein adsorption, and inhibition of four species of periodontitis-related biofilms for the first time. The resin consisted Of ethoxylated bisphenol A dimethacrylate (EBPADMA) and pyromellitic glycerol dimethacrylate (PMGDM). DMAHDM, MPC and nanoparticles of amorphous calcium phosphate (NACP) were incorporated into the resin. Four species (Porphyromonas Prevotella intermedia, Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum) were tested for biofilm colony-forming units (CFU), live/dead, metabolic activity, and polysaccharide production. The results showed that adding DMAHDM and MPC to the composite did not compromise the mechanical properties (p > 0.1), with acceptable water sorption values. Composite with 3% MPC reduced protein adsorption to 1/9 that of a commercial composite (p < 0.05). For all four species, the composite with 3% DMAHDM + 3% MPC had much greater reduction in biofilnls than using DMAHDM or MPC alone (p < 0.05). Biofilm CFU was reduced by about 4 orders of magnitude via 3% DMAHDM + 3% MPC, compared to control. The-inhibition efficacy for the four species was: P. gingivalis > P intermedia = A. actinomycetemcomitans > F. nucleatum. In conclusion, a novel bioactive composite with 3% DMAHDM and 3% MPC achieved the greatest reduction in biofilm growth, metabolic activity and polysaccharide of four periodontal pathogens. The new composite is promising for Class V restorations especially with subgingival margins to inhibit periodontal pathogens, combat periodontitis and protect the periodontium. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available