4.6 Article

Evolution and Distribution of Teleost myomiRNAs: Functionally Diversified myomiRs in Teleosts

Journal

MARINE BIOTECHNOLOGY
Volume 18, Issue 3, Pages 436-447

Publisher

SPRINGER
DOI: 10.1007/s10126-016-9705-9

Keywords

microRNA; myomiR; Myosin heavy chain; miR-736; miR-499; Teleost

Funding

  1. Japan Society for the Promotion of Science
  2. Grants-in-Aid for Scientific Research [26292112] Funding Source: KAKEN

Ask authors/readers for more resources

Myosin heavy chain (MYH) genes belong to a multigene family, and the regulated expression of each member determines the physiological and contractile muscle properties. Among these, MYH6, MYH7, and MYH14 occupy unique positions in the mammalian MYH gene family because of their specific expression in slow/cardiac muscles and the existence of intronic micro(mi) RNAs. MYH6, MYH7, and MYH14 encode miR-208a, miR-208b, and miR-499, respectively. These MYH encoded miRNAs are designated as myomiRs because of their muscle-specific expression and functions. In mammals, myomiRs and host MYHs form a transcription network involved in muscle fiber-type specification; thus, genomic positions and expression patterns of them are well conserved. However, our previous studies revealed divergent distribution and expression of MYH14/miR-499 among teleosts, suggesting the unique evolution of myomiRs and host MYHs in teleosts. Here, we examined distribution and expression of myomiRs and host MYHs in various teleost species. The major cardiac MYH isoforms in teleosts are an intronless gene, atrial myosin heavy chain (amhc), and ventricular myosin heavy chain (vmhc) gene that encodes an intronic miRNA, miR-736. Phylogenetic analysis revealed that vmhc/miR-736 is a teleost-specific myomiR that differed from tetrapoda MYH6/MYH7/miR-208s. Teleost genomes also contain species-specific orthologs in addition to vmhc and amhc, indicating complex gene duplication and gene loss events during teleost evolution. In medaka and torafugu, miR-499 was highly expressed in slow/cardiac muscles whereas the expression of miR-736 was quite low and not muscle specific. These results suggest functional diversification of myomiRs in teleost with the diversification of host MYHs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available