4.1 Article

Soft robotics towards sustainable development goals and climate actions

Journal

FRONTIERS IN ROBOTICS AND AI
Volume 10, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/frobt.2023.1116005

Keywords

smart material robotics; sustainable development goals; biodegradable materials; physical intelligence; green energy; field deployable robotics

Categories

Ask authors/readers for more resources

Soft robotics technology can contribute to the achievement of the United Nations' Sustainable Development Goals (SDGs) and the Paris Climate Agreement by developing autonomous machines powered by renewable energy. It can mitigate the impact of climate change on society and the environment through adaptation, restoration, and remediation. Additionally, it offers potential for advancements in material science, biology, control systems, energy efficiency, and sustainable manufacturing processes. However, further improvements are needed in understanding biological principles, environment-friendly materials, and energy-saving strategies to design and manufacture self-piloting soft robots. This paper provides insights into how soft robotics can address the pressing issue of environmental sustainability.
Soft robotics technology can aid in achieving United Nations' Sustainable Development Goals (SDGs) and the Paris Climate Agreement through development of autonomous, environmentally responsible machines powered by renewable energy. By utilizing soft robotics, we can mitigate the detrimental effects of climate change on human society and the natural world through fostering adaptation, restoration, and remediation. Moreover, the implementation of soft robotics can lead to groundbreaking discoveries in material science, biology, control systems, energy efficiency, and sustainable manufacturing processes. However, to achieve these goals, we need further improvements in understanding biological principles at the basis of embodied and physical intelligence, environment-friendly materials, and energy-saving strategies to design and manufacture self-piloting and field-ready soft robots. This paper provides insights on how soft robotics can address the pressing issue of environmental sustainability. Sustainable manufacturing of soft robots at a large scale, exploring the potential of biodegradable and bioinspired materials, and integrating onboard renewable energy sources to promote autonomy and intelligence are some of the urgent challenges of this field that we discuss in this paper. Specifically, we will present field-ready soft robots that address targeted productive applications in urban farming, healthcare, land and ocean preservation, disaster remediation, and clean and affordable energy, thus supporting some of the SDGs. By embracing soft robotics as a solution, we can concretely support economic growth and sustainable industry, drive solutions for environment protection and clean energy, and improve overall health and well-being.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available