4.4 Article

Predicting factors for malaria re-introduction: an applied model in an elimination setting to prevent malaria outbreaks

Journal

MALARIA JOURNAL
Volume 15, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s12936-016-1192-y

Keywords

Malaria; Re-introduction; Elimination; Outbreak; Forecast; MEWS; Transmission; Meteorological; Population movement

Ask authors/readers for more resources

Background: Malaria re-introduction is a challenge in elimination settings. To prevent re-introduction, receptivity, vulnerability, and health system capacity of foci should be monitored using appropriate tools. This study aimed to design an applicable model to monitor predicting factors of re-introduction of malaria in highly prone areas. Methods: This exploratory, descriptive study was conducted in a pre-elimination setting with a high-risk of malaria transmission re-introduction. By using nominal group technique and literature review, a list of predicting indicators for malaria re-introduction and outbreak was defined. Accordingly, a checklist was developed and completed in the field for foci affected by re-introduction and for cleared-up foci as a control group, for a period of 12 weeks before re-introduction and for the same period in the previous year. Using field data and analytic hierarchical process (AHP), each variable and its sub-categories were weighted, and by calculating geometric means for each sub-category, score of corresponding cells of interaction matrices, lower and upper threshold of different risks strata, including low and mild risk of re-introduction and moderate and high risk of malaria outbreaks, were determined. The developed predictive model was calibrated through resampling with different sets of explanatory variables using R software. Sensitivity and specificity of the model were calculated based on new samples. Results: Twenty explanatory predictive variables of malaria re-introduction were identified and a predictive model was developed. Unpermitted immigrants from endemic neighbouring countries were determined as a pivotal factor (AHP score: 0.181). Moreover, quality of population movement (0.114), following malaria transmission season (0.088), average daily minimum temperature in the previous 8 weeks (0.062), an outdoor resting shelter for vectors (0.045), and rainfall (0.042) were determined. Positive and negative predictive values of the model were 81.8 and 100 %, respectively. Conclusions: This study introduced a new, simple, yet reliable model to forecast malaria re-introduction and outbreaks eight weeks in advance in pre-elimination and elimination settings. The model incorporates comprehensive deterministic factors that can easily be measured in the field, thereby facilitating preventive measures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available