4.7 Article

Nanostructured Polyethylene Reactor Blends with Tailored Trimodal Molar Mass Distributions as Melt-Processable All-Polymer Composites

Journal

MACROMOLECULES
Volume 49, Issue 21, Pages 8048-8060

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.6b01407

Keywords

-

Funding

  1. German Federal Ministry of Education and Research (BMBF) within the multiKAT project [03X3565C]

Ask authors/readers for more resources

Tailoring trimodal polyethylene (PE) molar mass distributions by means of ethylene polymerization on three-site catalysts, supported on functionalized graphene (FG), enables nanophase separation during polymerization and melt processing, paralleled by PE self-reinforcement. Typically, FG/MAO-supported three-site catalysts combine bis(iminopyridyl)chromium tricbloride (CrBIP), producing PE wax having high crystallization rate, and quinolylcyclo-pentadienylchromium dichloride (CrQCp), forming in situ ultrahigh molecular weight PE (UHMWPE) nanostructures, with bis(iminopyridyl)iron dichloride (FeBIP) or bis(tert-butyl cyclopentadienyl)zirconium (ZrCp), respectively, producing HDPE with variable intermediate molar mass. During injection molding, the formation of shish-kebab fiber-like extended-chain UHMWPE structures, as verified by SEM, AFM, and DSC, account for effective self-reinforcement. Only in the presence of high UHMWPE content, PE wax, usually an unwanted byproduct in HDPE synthesis, functions as a built-in processing aid and enables the incorporation of much higher UHMWPE contents (30 wt %) than previously thought to be tolerable in injection molding. Whereas the incorporation of UHMWPE/PE wax blends improves stiffness and strength, the simultaneous FG dispersion accounts for substantially higher impact strength.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available