4.7 Article

How the Polymerization Procedures Affect the Morphology of the Block Copolymer Nanoassemblies: Comparison between Dispersion RAFT Polymerization and Seeded RAFT Polymerization

Journal

MACROMOLECULES
Volume 49, Issue 21, Pages 8167-8176

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.macromol.6b01756

Keywords

-

Funding

  1. National Science Foundation for Distinguished Young Scholars [21525419]
  2. National Science Foundation of China [21274066, 21474054]
  3. National Key Research and Development Program of China [2016YFA0202503]

Ask authors/readers for more resources

Polymerization-induced self-assembly (PISA) is proven to be a powerful approach of in situ synthesis of block copolymer (BCP) nanoassemblies, and polymerization conditions are found to be correlative to the block copolymer morphology. In this study, three PISA formulations, e.g., the poly(ethylene glycol) macro-RAFT agent mediated dispersion RAFT polymerization, seeded dispersion RAFT polymerization, and seeded emulsion RAFT polymerization, are comparatively investigated. Our results reveal that dispersion RAFT polymerization undergoes much slower than other two PISA formulations of seeded dispersion RAFT polymerization and seeded emulsion RAFT polymerization. Besides, the results reveal that the BCP morphology of poly(ethylene glycol)-block-polystyrene (PEG(45)-b-PS) produced via three PISA cases is much different. That is, dispersion RAFT polymerization affords vesicles, seeded dispersion RAFT polymerization affords the mixture of vesicles and porous nanospheres, and seeded emulsion RAFT polymerization affords porous nanospheres of PEG(45)-b-PS. The reason for formation of porous nanospheres by seeded RAFT polymerization is discussed, and the fed styrene monomer swelling the seeded vesicles is ascribed. Our study clarifies how the PISA procedures affect the morphology of BCP nanoassemblies, and it is expected to be effective to prepare BCP nanoassemblies with interesting morphology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available