4.3 Article

Physical properties and photocatalytic activity of chitosan-based nanocomposites added titanium oxide nanoparticles

Journal

MACROMOLECULAR RESEARCH
Volume 24, Issue 1, Pages 51-59

Publisher

SPRINGER
DOI: 10.1007/s13233-016-4008-6

Keywords

chitosan-based nanocomposite; titanium oxide nanoparticle; physical properties; photocatalytic degradability

Funding

  1. National Research Foundation of Korea (NRF) - Ministry of Education [NRF-2014R1A1A2057671]

Ask authors/readers for more resources

In this study, nanocomposite films were prepared by using chitosan (CHS), poly(vinyl alcohol) (PVA), titanium oxide (TiO2) nanoparticles, sulfosuccinic acid (SSA) as a crosslinking agent, and sorbitol (SO) and citric acid (CA) as plasticizers. The CHS/PVA nanocomposite films were characterized by X-ray diffraction (XRD), Fourier transform IR spectrophotometry (FTIR), and scanning electronic microscopy (SEM). The results of the XRD and FTIR analysis verified that TiO2 characteristic peaks existed in the prepared nanocomposite films. In addition, the intensity of TiO2 characteristic peaks increased with the increase of TiO2 contents. The physical properties such as tensile strength (TS), elongation at break (%E), swelling behavior (SB), and solubility (S) were investigated. The results indicated that compared with films without added TiO2, the mechanical properties and water resistance were enhanced up to 1.42-1.50 times with the addition of TiO2. The photocatalytic degradability of the prepared films containing TiO2 was evaluated using bisphenol A (BPA) and methyl orange (MO) as photodegradation targets. In addition, the photocatalytic degradation kinetics were evaluated using the pseudo-first-order Lagergren equation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available