4.5 Article

Monitoring spatiotemporal impacts of changes in land surface temperature on near eastern fire salamander (Salamandra infraimmaculata) in the Middle East

Journal

HELIYON
Volume 9, Issue 6, Pages -

Publisher

CELL PRESS
DOI: 10.1016/j.heliyon.2023.e17241

Keywords

Salamandra infraimmaculata; Land surface temperature; Changing trends; MODIS; Habitat patches

Ask authors/readers for more resources

The study evaluates the effects of land surface temperature (LST) trends on the habitat suitability and connectivity of pond-breeding amphibians. It finds that some suitable habitats are affected by increasing LST, while the impact of decreasing LST on suitable habitats is smaller. The results show that LST trends have different effects at different levels, providing effective management strategies for conserving species populations.
Persistence and coexistence of many pond-breeding amphibians depend on seasonality. Temperature, as a seasonal climate component, affects numerous physical and biological processes of pond-breeding amphibians. Satellite-derived land surface temperature (LST) is the radiative skin temperature of the land surface, which has received less attention in spatiotemporal seasonal habitat monitoring. The present study aims to evaluate the increasing and decreasing effects of LST trends at two levels: (1) habitat suitability and connectivity; (2) individual population sites and their longitudinal distribution (with increasing longitude).Habitat suitability modeling was conducted based on an ensemble species distribution model (eSDM). Using electrical circuit theory, the connectivity of interior and intact habitat cores was investigated. An average seasonal LST was prepared separately for each season from 2003 to 2021 and entered into Mann-Kendall (MK) analysis to determine the spatiotemporal effects of LST changes using the Z-Score (ZMK) at two confidence levels of 95 and 99%. Based on the results, in winter, 28.12% and 70.70% of the suitable habitat were affected by an increasing trend of LST at 95% and 99% confidence levels, respectively. The highest spatial overlap of the decreasing trend of LST with the suitable habitat occurred in summer and was 6.4% at the 95% confidence level and 4.2% at the 99% confidence level. Considering population site at 95% confidence interval, the increasing trend of LST was calculated to be 20.2%, 9.5%, 4.2%, and 6.3% of localities in winter, spring, summer, and autumn, respectively. At the 99% confidence level, these percentages reduced to 8.5%, 3.1%, 1%, and 1%, respectively. During winter and summer, based on the results of the longitudinal trend, an increasing trend of LST was observed in sites. Localities of Hatay and Iica village in Turkey experienced seasonally asynchronous climate change regimes. The approach used in this study allowed us to create a link between the life cycle and seasonal changes on a micro-scale (breeding sites) and macro-scale (distribution and connectivity). Findings of this paper can be effectively used by conservation managers to preserve S. infraimmaculata's metapopulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available