4.5 Article

The residential application of chain recooling energy recovery ventilator system in a hot and humid climate

Journal

HELIYON
Volume 9, Issue 5, Pages -

Publisher

CELL PRESS
DOI: 10.1016/j.heliyon.2023.e16119

Keywords

Energy recovery ventilator; Indoor air quality; Building efficiency; Chain recooling; Carbon dioxide; PM 2; 5

Ask authors/readers for more resources

This study proposes a novel Chain Recooling Energy Recovery Ventilator (CR-ERV) system to address the drawbacks of the typical Energy Recovery Ventilator (ERV) system. The experiment conducted in a hot and humid climate shows that the proposed system can significantly reduce indoor CO2 and PM2.5 concentrations, thus improving indoor air quality. Although there is a slight increase in electricity consumption, the implementation of this system is straightforward and economical, making it worth integrating into future residential building projects.
The Energy Recovery Ventilator (ERV) is proven efficient for residential ventilation applications. Yet, certain drawbacks, including a more confined space due to descended ceiling, a lengthy accompanying duct system, and over-ventilation issues that result in extensive energy consumption, need to be addressed. In this study, a novel Chain Recooling Energy Recovery Ventilator (CR-ERV) system is proposed to replace the typical ERV system design to solve the shortcomings above. By conducting an experiment on a three-bedroom condo in a hot and humid climate, it was found that compared to the natural ventilation strategy, the proposed system can help reduce the mean indoor carbon dioxide (CO2) concentration from 976 to 677 ppm and PM2.5 concentration from 6.4 to 4.1 & mu;g/m3, representing a 29% and 34% reduction, respectively. From the regulatory perspective, only 64.4% of the natural-ventilated hours have a CO2 concentration below the 1000 ppm limit per the local air quality Act. This fraction can be improved to 99% after adopting the proposed ventilation system. All these benefits come at the cost of a slight 2.3% increase in electricity consumption. In summary, the proposed system is proven efficient, and its implementation is fairly straightforward and economical; thus might be worth integrating into future residential building projects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available