4.7 Article

Polyphosphazene Based Star-Branched and Dendritic Molecular Brushes

Journal

MACROMOLECULAR RAPID COMMUNICATIONS
Volume 37, Issue 9, Pages 769-774

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/marc.201600057

Keywords

biodegradable polymers; dendritic molecular brushes; macromolecular architectures; polyphosphazenes; star polymers

Funding

  1. Austrian Science Fund (FWF) [P24659-N28]
  2. European Union in the context of the project RERI-uasb (ETC Austria-Czech Republic) [EFRE RU2-EU-124/100-2010, M00146]
  3. Austrian Science Fund (FWF) [P24659] Funding Source: Austrian Science Fund (FWF)
  4. Austrian Science Fund (FWF) [P 24659] Funding Source: researchfish

Ask authors/readers for more resources

A new synthetic procedure is described for the preparation of poly(organo) phosphazenes with star-branched and star dendritic molecular brush type structures, thus describing the first time it has been possible to prepare controlled, highly branched architectures for this type of polymer. Furthermore, as a result of the extremely high-arm density generated by the phosphazene repeat unit, the second-generation structures represent quite unique architectures for any type of polymer. Using two relativity straight forward iterative syntheses it is possible to prepare globular highly branched polymers with up to 30 000 functional end groups, while keeping relatively narrow polydispersities (1.2-1.6). Phosphine mediated polymerization of chlorophosphoranimine is first used to prepare three-arm star polymers. Subsequent substitution with diphenylphosphine moieties gives poly(organo) phosphazenes to function as multifunctional macroinitiators for the growth of a second generation of polyphosphazene arms. Macrosubstitution with Jeffamine oligomers gives a series of large, water soluble branched macromolecules with high-arm density and hydrodynamic diameters between 10 and 70 nm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available