4.4 Article

High-Throughput Step Emulsification for the Production of Functional Materials Using a Glass Microfluidic Device

Journal

MACROMOLECULAR CHEMISTRY AND PHYSICS
Volume 218, Issue 2, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/macp.201600472

Keywords

microfluidic glass device; monodispersity; step emulsification; up-scalable microfluidics

Funding

  1. Swiss National Center of Compentence in Research (NCCR) for Bio-Inspired Materials
  2. ETH Zurich
  3. National Science Foundation [DMR-1310266]
  4. Harvard Materials Research Science and Engineering Center [DMR-1420570]

Ask authors/readers for more resources

High-volume production of monodisperse droplets is of importance for industrial applications due to increased emulsion stability, precise control over droplet volumes, and the formation of periodic arranged structures. So far, parallelized microfluidic devices are limited by either their complicated channel geometry or by their chemically or thermally unstable embedding material. This study shows a scalable microfluidic step emulsification chip that enables production of monodisperse emulsions at a throughput of up to 25 mL h(-1) in a glass device with 364 linearly parallelized droplet makers. The chemical and thermal stability of such a glass device allows for the preparation of a broad variety of functional particles and microdroplets by using any desired solvent together with nanoparticles, polymers, and hydrogels. Moreover, the microfluidic device can be stringently cleaned for nearly unlimited use and permits the alternating production of oil-in-water and water-in-oil emulsions. The combined high throughput, chemical and thermal stability offered by our device enables production of monodisperse functional materials for large-scale applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available