4.6 Article

Exploring battery cathode materials in the Li-Ni-O phase diagrams using structure prediction

Journal

JOURNAL OF PHYSICS-ENERGY
Volume 5, Issue 3, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/2515-7655/acdd9c

Keywords

lithium-ion batteries; ab initio random structure searching; density functional theory

Ask authors/readers for more resources

In this study, ab initio random structure searching (AIRSS) was used to accelerate materials discovery of the Li-Ni-O phase space. The study discovered structures (such as LiNiO2) displaying dynamic Jahn-Teller effects and a thermodynamically stable Li2Ni2O3 phase. Additionally, many dynamically stable structures close to the convex hull were encountered, confirming the presence of metastable Li-Ni-O phases and revealing their structures and properties. This work will facilitate the identification of Li-Ni-O phases in future experiments and address the challenges in synthesizing these phases.
The Li-Ni-O phase diagram contains several electrochemically active ternary phases. Many compositions and structures in this phase space can easily be altered by (electro-)chemical processes, yielding many more (meta-)stable structures with interesting properties. In this study, we use ab initio random structure searching (AIRSS) to accelerate materials discovery of the Li-Ni-O phase space. We demonstrate that AIRSS can efficiently explore structures (e.g. LiNiO2) displaying dynamic Jahn-Teller effects. A thermodynamically stable Li2Ni2O3 phase which reduces the thermodynamic stability window of LiNiO2 was discovered. AIRSS also encountered many dynamically stable structures close to the convex hull. Therefore, we confirm the presence of metastable Li-Ni-O phases by revealing their structures and properties. This work will allow Li-Ni-O phases to be more easily identified in future experiments and help to combat the challenges in synthesizing Li-Ni-O phases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available