4.7 Article

In Vitro Shoot Multiplication and Regeneration of the Recalcitrant Rocket (Eruca sativa Mill.) Variety Domaca Rukola

Journal

HORTICULTURAE
Volume 9, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/horticulturae9050533

Keywords

organogenesis; somatic embryogenesis; cytokinins; rooting; kaempferol

Categories

Ask authors/readers for more resources

In this study, an efficient tissue culture system for improving the rocket cultivar Domaca rukola was established. Optimal shoot multiplication and organogenesis protocols were determined through experiments with different hormone concentrations and combinations. In addition, in vitro-produced rocket shoots were found to be a potential source of the antioxidant flavonoid kaempferol.
Eruca sativa is known in traditional medicine for its therapeutic effects, while young plants are used as a salad or green food. Recently, the consumption of rocket has increased considerably, so it has become very important for breeders. Plant tissue culture provides a platform to overcome the problems in improving this species. In the present study, an efficient protocol for in vitro shoot regeneration and propagation of recalcitrant rocket variety Domaca rukola was studied. Murashige and Skoog (MS, 1962) medium containing 0.1 mg L-1 BA and frequent subculture over a period of three weeks proved to be optimal for shoot multiplication with a multiplication index of over 3 and only 8.72% of hyperhydrated shoots without necrosis. Different concentrations of 2,4-D, BA, or TDZ in combination with NAA, with or without the presence of AgNO3, were tested for de novo shoot organogenesis (DNSO) from seedling explants. The hypocotyl explants cultured on MS with a combination of TDZ1.0+NAA0.1+AgNO3 5.0 mg L-1 regenerated viable shoots with the highest rate (25.38%) and an average number of 2.18 shoots per regenerating explant. Somatic embryogenesis from immature zygotic embryos proved to be the best way to regenerate a recalcitrant rocket cultivar. The highest embryogenic efficiency was achieved in explants cultured on MS medium containing 1.0 mg L-1 2,4-D with a frequency of 76.64% and 5.13 mean number of regenerated somatic embryos per explant, which were further converted into normal plants. Additionally, in vitro-produced rocket shoots could serve as a possible promising source for the production of flavonoid kaempferol with proven antioxidant properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available