4.6 Article

Characteristics of High-Power Impulse Magnetron Sputtering ITO/Ag/ITO Films for Application in Transparent Micro-LED Displays

Journal

ACS APPLIED ELECTRONIC MATERIALS
Volume -, Issue -, Pages -

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsaelm.2c01461

Keywords

transparent micro-LED displays; transparent conductive film; indium tin oxide; HIPIMS; ITO; Ag

Ask authors/readers for more resources

In this study, a blue transparent micro-LED display with a chip size of 20 μm × 20 μm, a pixel density of 152 PPI, a pixel spacing of 150 μm, and a resolution of 64 × 32 has been successfully fabricated. ITO/Ag/ITO transparent layers were deposited by high-power impulse magnetron sputtering. The electrical properties of the indium tin oxide (ITO) layers were analyzed using sheet resistance, while surface morphology was examined using scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The results show that the ITO/Ag/ITO structure with 20 nm thick Ag has a lower sheet resistance (3.36 Cl/sq) and sufficient visible light transmittance (80.45%). The visible light transmittance of the ITO/Ag/ITO layers increased to 86% after rapid thermal annealing. Furthermore, surface roughness was minimized and sheet resistance was further reduced, resulting in ohmic contact on n-GaN for transparent micro-LED display applications.
In this study, a blue transparent micro-LED display with a chip size of 20 mu m x 20 mu m, a pixel density of 152 PPI, a pixel spacing of 150 mu m, and a resolution of 64 x 32 has been fabricated. ITO/Ag/ITO transparent layers were deposited by high-power impulse magnetron sputtering. Sheet resistance was used to analyze the electrical properties of the indium tin oxide (ITO) layers, whereas scanning electron microscopy, transmission electron microscopy, and atomic force microscopy were used to examine the surface morphology. These results demonstrate that the ITO/Ag/ITO structure with 20 nm thick Ag has a lower sheet resistance (3.36 Cl/sq) and sufficient visible light transmittance (80.45%). The visible light transmittance of the ITO/Ag/ITO layers increased to 86% after rapid thermal annealing. In addition, surface roughness was minimized, and sheet resistance was further reduced, resulting in ohmic contact on n-GaN that is suited for applications involving transparent micro-LED displays.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available