4.6 Article

Research on Fault-Tolerant Control of Distributed-Drive Electric Vehicles Based on Fuzzy Fault Diagnosis

Journal

ACTUATORS
Volume 12, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/act12060246

Keywords

distributed drive; electric vehicle; fault diagnosis; failure control; torque reconstruction

Ask authors/readers for more resources

This paper addresses the fault problem in distributed-four-wheel-drive electric vehicle drive systems. First, a fault-factor-based active fault diagnosis strategy is proposed. Second, a fault-tolerant controller is designed to reconstruct motor drive torque based on vehicle stability. The proposed control strategy accurately diagnoses the operating state of the motor, rebuilds the motor torque based on stability, and demonstrates robust stability when the drive system fails.
This paper addresses the fault problem in distributed-four-wheel-drive electric vehicle drive systems. First, a fault-factor-based active fault diagnosis strategy is proposed. Second, a fault-tolerant controller is designed to reconstruct motor drive torque based on vehicle stability. This controller ensures that the vehicle maintains stability by providing fault-free motor output torque based on fault diagnosis results. To validate the effectiveness of the fault diagnosis and fault-tolerant control, SIL simulation is conducted using MATLAB/Simulink and CarSim. A hardware-in-the-loop (HIL) simulation platform with the highest confidence level is established based on NI PXI and CarSim RT. Through the HIL simulation experiments, it is shown that the proposed control strategy can accurately diagnose the operating state of the motor, rebuild the motor torque based on stability, and demonstrate robust stability when the drive system fails. Under various fault conditions, the maximum error in the vehicle lateral angular velocity is less than 0.017 rad/s and the maximum deviation in the lateral direction is less than 0.7 m. These findings substantiate the highly robust stability of the proposed method.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available