4.5 Article

Laser Heating Method for an Alkali Metal Atomic Cell with Heat Transfer Enhancement

Journal

PHOTONICS
Volume 10, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/photonics10060637

Keywords

SERF magnetometer; non-magnetic laser heating; graphite film

Categories

Ask authors/readers for more resources

This research paper presents a non-magnetic heating structure based on laser heating principle, which improves the heating efficiency and temperature uniformity of the vapor cell by adding graphite film to balance temperature distribution and enhance conduction efficiency.
Alkali metal atomic cells are crucial components of atomic instruments, such as atomic magnetometers, atomic gyroscopes, and atomic clocks. A highly uniform and stable heating structure can ensure the stability of the alkali metal atom density. The vapor cell of an atomic magnetometer that uses laser heating has no magnetic field interference and ease of miniaturization, making it superior to hot air heating and AC electric heating. However, the current laser heating structure suffers from low heating efficiency and uneven temperature distribution inside the vapor cell. In this paper, we designed a non-magnetic heating structure based on the laser heating principle. We studied the temperature distribution of the heating structure using the finite element method (FEM) and analyzed the conversion and transfer of laser energy. We found that the heat conduction between the vapor cell and the heating chips (colored filters) is poor, resulting in uneven temperature distribution and low heating efficiency in the vapor cell. Therefore, the addition of graphite film to the four surfaces of the vapor cell was an important improvement. This addition helped to balance the temperature distribution and improve the conduction efficiency of the heating structure. It was measured that the power of the heating laser remained unchanged. After the addition of the graphite film, the temperature difference coefficient (CVT) used to evaluate the internal temperature uniformity of the vapor cell was reduced from 0.1308 to 0.0426. This research paper is crucial for improving the heating efficiency of the non-magnetic heating structure and the temperature uniformity of the vapor cell.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available