4.5 Article

The Platinization of Graphite Composites Turns Widespread and Low-Cost Materials into Hydrogen Peroxide Sensors and High-Value Biosensor Transducers

Journal

CHEMOSENSORS
Volume 11, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/chemosensors11030153

Keywords

graphite; carbon-composition resistors; pencil leads; platinization; glucose biosensor

Ask authors/readers for more resources

This paper investigates the possibility of using carbonaceous support materials for platinum deposition and evaluates the sensitivity of hydrogen peroxide and ascorbic acid using CV and CPA techniques. The results suggest that 0.3 mm pencil leads have the potential for constructing glucose biosensors.
Electrochemical microsensors and biosensors have been widely used in many fields, in particular neurochemical monitoring, because of their features. Usually, hydrogen peroxide (HP), obtained as a by-product of an enzymatic reaction, is the detected compound on transducers made of precious metals, in particular platinum. The over-time increase in the price of platinum and its alloys requires the use of miniaturizable low-cost supports that can be suitably modified with the deposition of Pt particles; among them, graphite is the most widespread. In the present paper, carbon-composition resistors (CCRs) and pencil leads (PLs) of different diameters (0.3, 0.5 and 2.0 mm), mainly made up of graphite, clay and some other components were used as carbonaceous support for the deposition of platinum. Platinizations were carried out by means of cyclic voltammetry (CV) and constant potential amperometry (CPA) techniques. On the platinized supports, hydrogen peroxide (HP) and ascorbic acid (AA) sensitivity were assessed in order to verify the possibility of using them as transducers of amperometric biosensors. All the used protocols determined the occurrence of HP monitoring, not appreciable on carbonaceous surfaces. We chose 0.3 mm o PLs for the construction of glucose biosensors by appropriately modifying the platinum surface layering, a permselective polymer, an enzyme booster, the glucose oxidase (GOx) enzyme and a containing network. The biosensor constructed in this way demonstrated a behavior comparable to that obtained using classic platinum wires.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available