4.5 Article

Recyclable Multifunctional Magnetic Fe3O4@SiO2@Au Core/Shell Nanoparticles for SERS Detection of Hg (II)

Journal

CHEMOSENSORS
Volume 11, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/chemosensors11060347

Keywords

core; shell nanoparticles; 4-pyridinethiol; surface-enhanced Raman spectroscopy (SERS); Mercury (II) ion; Raman cell imaging

Ask authors/readers for more resources

In this study, Fe3O4@SiO2@Au three-layer core/shell nanoparticles were synthesized and modified with 4-mercaptopyridine to form a surface-enhanced Raman scattering (SERS) sensor. The sensor can easily capture mercury ions in water and evaluate their concentration based on the spectral changes of 4-mercaptopyridine. The SERS sensor shows good stability, accuracy, and anti-interference ability, and has the potential to detect actual samples.
Mercury ions can be enriched along the food chain and even low concentrations of mercury ions can seriously affect human health and the environment. Therefore, rapid, sensitive, and highly selective detection of mercury ions is of great significance. In this work, we synthesized Fe3O4@SiO2@Au three-layer core/shell nanoparticles, and then modified 4-MPy (4-mercaptopyridine) to form a SERS sensor. Mercury ions in water can be easily captured by 4-MPy which were used as the reporter molecules, and the concentration of mercury ions can be evaluated based on the spectral changes (intensification and reduction of peaks) from 4-MPy. After the mercury ion was combined with the pyridine ring, the peak intensity at 1093 cm(-1) increased with the concentration of mercury ion in the range of 10 ppm-1 ppb, while the Raman intensity ratio I (416 cm(-1))/I (436 cm(-1)) decreased with the increase of mercury ion concentration. This magnetically separatable and recyclable SERS sensor demonstrates good stability, accuracy, and anti-interference ability and shows the potential to detect actual samples. Furthermore, we demonstrate that the probe is applicable for Hg2+ imaging in macrophage cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available