4.7 Article

Tablet-Based Wearable Patch Sensor Design for Continuous Cardiovascular System Monitoring in Postoperative Settings

Journal

BIOSENSORS-BASEL
Volume 13, Issue 6, Pages -

Publisher

MDPI
DOI: 10.3390/bios13060615

Keywords

cardiovascular health monitoring; patch sensor; heart and lung sounds; stethoscope; electrocardiography (ECG); analog front end (AFE); tablet-based software

Ask authors/readers for more resources

Meticulous monitoring of the cardiovascular system is crucial for postoperative patients in postanesthesia or intensive care units. This study presents a novel bedside monitoring system that utilizes a lightweight and wearable patch sensor to continuously monitor the cardiovascular system.
Meticulous monitoring for cardiovascular systems is important for postoperative patients in postanesthesia or the intensive care unit. The continuous auscultation of heart and lung sounds can provide a valuable information for patient safety. Although numerous research projects have proposed the design of continuous cardiopulmonary monitoring devices, they primarily focused on the auscultation of heart and lung sounds and mostly served as screening tools. However, there is a lack of devices that could continuously display and monitor the derived cardiopulmonary parameters. This study presents a novel approach to address this need by proposing a bedside monitoring system that utilizes a lightweight and wearable patch sensor for continuous cardiovascular system monitoring. The heart and lung sounds were collected using a chest stethoscope and microphones, and a developed adaptive noise cancellation algorithm was implemented to remove the background noise corrupted with those sounds. Additionally, a short-distance ECG signal was acquired using electrodes and a high precision analog front end. A high-speed processing microcontroller was used to allow real-time data acquisition, processing, and display. A dedicated tablet-based software was developed to display the acquired signal waveforms and the processed cardiovascular parameters. A significant contribution of this work is the seamless integration of continuous auscultation and ECG signal acquisition, thereby enabling the real-time monitoring of cardiovascular parameters. The wearability and lightweight design of the system were achieved through the use of rigid-flex PCBs, which ensured patient comfort and ease of use. The system provides a high-quality signal acquisition and real-time monitoring of the cardiovascular parameters, thus proving its potential as a health monitoring tool.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available